Difference between revisions of "2022 AMC 12B Problems/Problem 21"

(Created page with "==Problem== Let <math>S</math> be the set of circles in the coordinate plane that are tangent to each of the three circles with equations <math>x^{2}+y^{2}=4</math>, <math>x^{...")
 
(Redirected page to 2022 AMC 10B Problems/Problem 22)
(Tag: New redirect)
 
(14 intermediate revisions by 7 users not shown)
Line 1: Line 1:
==Problem==
+
#redirect [[2022 AMC 10B Problems/Problem 22]]
Let <math>S</math> be the set of circles in the coordinate plane that are tangent to each of the three circles with equations <math>x^{2}+y^{2}=4</math>, <math>x^{2}+y^{2}=64</math>, and <math>(x-5)^{2}+y^{2}=3</math>. What is the sum of the areas of all circles in <math>S</math>?
 
 
 
<math>\textbf{(A)}~48\pi\qquad\textbf{(B)}~68\pi\qquad\textbf{(C)}~96\pi\qquad\textbf{(D)}~102\pi\qquad\textbf{(E)}~136\pi\qquad</math>
 
 
 
==Solution==
 
<asy>
 
        import geometry;
 
        unitsize(0.5cm);
 
 
 
void dc(pair x, pen p) {
 
          pair y = intersectionpoints(circle((0,0),8),(0,0)--1000*x)[0];
 
          draw(circle(x, abs(x-y)),p);
 
        }
 
 
 
        pair O1 = (0,0),O2=(5,0),P1=intersectionpoints(circle(O1,5),circle(O2,3+sqrt(3)))[0],P2=intersectionpoints(circle(O1,3),circle(O2,5+sqrt(3)))[0],P3=intersectionpoints(circle(O1,5),circle(O2,3-sqrt(3)))[0],P4=intersectionpoints(circle(O1,3),circle(O2,5-sqrt(3)))[0];
 
 
 
        draw(circle(O1,2));
 
        draw(circle(O1,8));
 
        draw(circle(O2,sqrt(3)));
 
 
 
dc(P1,blue);
 
dc(P2,red);
 
dc(P3,darkgreen);
 
dc(P4,brown);
 
</asy>
 
The circles match up as follows: Case 1 is brown, Case 2 is blue, Case 3 is green, and Case 4 is red.[/center]
 
Let x2+y2=64 be circle O, x2+y2=4 be circle P, and (x5)2+y2=3 be circle Q.
 
All the circles in S are internally tangent to circle O.
 
There are four cases with two circle belonging to each:
 
 
 
[*] P and Q are internally tangent to S.
 
[*] P and Q are externally tangent to S.
 
[*] P is externally and Circle Q is internally tangent to S.
 
[*] P is internally and Circle Q is externally tangent to S.
 
 
 
Consider Cases 1 and 4 together. Since circles O and P have the same center, the line connecting the center of S and the center of O will pass through both the tangency point of S and O and the tangency point of S and P. This line will be the diameter of S and have length rP+rO=10. Therefore the radius of S in these cases is 5.
 
 
 
Consider Cases 2 and 3 together. Similarly to Case 1 and 4, the line connecting the center of S to the center of O will pass through the tangency points. This time however, the diameter of S will have length rPrO=6. Therefore, the radius of S in these cases is 3.
 
   
 
The set of circles S consists of 8 circles - 4 of which have radius 5 and 4 of which have radius 3.
 
The total area of all circles in S is 4(52π+32π)=136π(E).
 
 
 
-naman12
 
 
 
{{AMC12 box|year=2022|ab=B|num-b=20|num-a=22}}
 
{{AMC10 box|year=2022|ab=B|num-b=21|num-a=23}}
 
{{MAA Notice}}
 

Latest revision as of 11:27, 14 December 2022