|
|
(13 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect [[2022 AMC 10B Problems/Problem 22]] |
− | Let <math>S</math> be the set of circles in the coordinate plane that are tangent to each of the three circles with equations <math>x^{2}+y^{2}=4</math>, <math>x^{2}+y^{2}=64</math>, and <math>(x-5)^{2}+y^{2}=3</math>. What is the sum of the areas of all circles in <math>S</math>?
| |
− | | |
− | <math>\textbf{(A)}~48\pi\qquad\textbf{(B)}~68\pi\qquad\textbf{(C)}~96\pi\qquad\textbf{(D)}~102\pi\qquad\textbf{(E)}~136\pi\qquad</math>
| |
− | | |
− | ==Solution==
| |
− | <asy>
| |
− | import geometry;
| |
− | unitsize(0.5cm);
| |
− | | |
− | void dc(pair x, pen p) {
| |
− | pair y = intersectionpoints(circle((0,0),8),(0,0)--1000*x)[0];
| |
− | draw(circle(x, abs(x-y)),p);
| |
− | }
| |
− | | |
− | pair O1 = (0,0),O2=(5,0),P1=intersectionpoints(circle(O1,5),circle(O2,3+sqrt(3)))[0],P2=intersectionpoints(circle(O1,3),circle(O2,5+sqrt(3)))[0],P3=intersectionpoints(circle(O1,5),circle(O2,3-sqrt(3)))[0],P4=intersectionpoints(circle(O1,3),circle(O2,5-sqrt(3)))[0];
| |
− | | |
− | draw(circle(O1,2));
| |
− | draw(circle(O1,8));
| |
− | draw(circle(O2,sqrt(3)));
| |
− | | |
− | dc(P1,blue);
| |
− | dc(P2,red);
| |
− | dc(P3,darkgreen);
| |
− | dc(P4,brown);
| |
− | </asy>
| |
− | The circles match up as follows: Case 1 is brown, Case 2 is blue, Case 3 is green, and Case 4 is red.[/center]
| |
− | Let be circle , be circle , and be circle .
| |
− | All the circles in S are internally tangent to circle .
| |
− | There are four cases with two circle belonging to each:
| |
− | | |
− | [*] and are internally tangent to S.
| |
− | [*] and are externally tangent to S.
| |
− | [*] is externally and Circle is internally tangent to S.
| |
− | [*] is internally and Circle is externally tangent to S.
| |
− | | |
− | Consider Cases 1 and 4 together. Since circles and have the same center, the line connecting the center of and the center of will pass through both the tangency point of and and the tangency point of and . This line will be the diameter of and have length . Therefore the radius of in these cases is 5.
| |
− | | |
− | Consider Cases 2 and 3 together. Similarly to Case 1 and 4, the line connecting the center of to the center of will pass through the tangency points. This time however, the diameter of will have length . Therefore, the radius of in these cases is 3.
| |
− |
| |
− | The set of circles S consists of 8 circles - 4 of which have radius 5 and 4 of which have radius 3.
| |
− | The total area of all circles in S is .
| |
− | | |
− | -naman12
| |
− | | |
− | ==Solution==
| |
− | | |
− | We denote by <math>C_1</math> the circle that has the equation <math>x^2 + y^2 = 4</math>.
| |
− | We denote by <math>C_2</math> the circle that has the equation <math>x^2 + y^2 = 64</math>.
| |
− | We denote by <math>C_3</math> the circle that has the equation <math>(x-5)^2 + y^2 = 3</math>.
| |
− | | |
− | We denote by <math>C_0</math> a circle that is tangent to <math>C_1</math>, <math>C_2</math> and <math>C_3</math>.
| |
− | We denote by <math>\left( u, v \right)</math> the coordinates of circle <math>C_0</math>, and <math>r</math> the radius of this circle.
| |
− | | |
− | From the graphs of circles <math>C_1</math>, <math>C_2</math>, <math>C_3</math>, we observe that if <math>C_0</math> is tangent to all of them, then <math>C_0</math> must be internally tangent to <math>C_2</math>.
| |
− | We have
| |
− | <cmath>
| |
− | \[
| |
− | u^2 + v^2 = \left( 8 - r \right)^2 . \hspace{1cm} (1)
| |
− | \]
| |
− | </cmath>
| |
− | | |
− | We do the following casework analysis in terms of the whether <math>C_0</math> is externally tangent to <math>C_1</math> and <math>C_3</math>.
| |
− | | |
− | Case 1: <math>C_0</math> is externally tangent to <math>C_1</math> and <math>C_3</math>.
| |
− | | |
− | We have
| |
− | <cmath>
| |
− | \[
| |
− | u^2 + v^2 = \left( r + 2 \right)^2 \hspace{1cm} (2)
| |
− | \]
| |
− | </cmath>
| |
− | and
| |
− | <cmath>
| |
− | \[
| |
− | (u-5)^2 + v^2 = \left( r + \sqrt{3} \right)^2 . \hspace{1cm} (3)
| |
− | \]
| |
− | </cmath>
| |
− | | |
− | Taking <math>(2) - (1)</math>, we get <math>r + 2 = 8 - r</math>. Thus, <math>r = 3</math>.
| |
− | We can further compute (omitted here) that there exist feasible <math>(u,v)</math> with this given <math>r</math>.
| |
− | | |
− | Case 2: <math>C_1</math> is internally tangent to <math>C_0</math> and <math>C_3</math> is externally tangent to <math>C_0</math>.
| |
− | | |
− | We have
| |
− | <cmath>
| |
− | \[
| |
− | u^2 + v^2 = \left( r - 2 \right)^2 \hspace{1cm} (2)
| |
− | \]
| |
− | </cmath>
| |
− | and
| |
− | <cmath>
| |
− | \[
| |
− | (u-5)^2 + v^2 = \left( r + \sqrt{3} \right)^2 . \hspace{1cm} (3)
| |
− | \]
| |
− | </cmath>
| |
− | | |
− | Taking <math>(2) - (1)</math>, we get <math>r - 2 = 8 - r</math>. Thus, <math>r = 5</math>.
| |
− | We can further compute (omitted here) that there exist feasible <math>(u,v)</math> with this given <math>r</math>.
| |
− | | |
− | Case 3: <math>C_1</math> is externally tangent to <math>C_0</math> and <math>C_3</math> is internally tangent to <math>C_0</math>.
| |
− | | |
− | We have
| |
− | <cmath>
| |
− | \[
| |
− | u^2 + v^2 = \left( r + 2 \right)^2 \hspace{1cm} (2)
| |
− | \]
| |
− | </cmath>
| |
− | and
| |
− | <cmath>
| |
− | \[
| |
− | (u-5)^2 + v^2 = \left( r - \sqrt{3} \right)^2 . \hspace{1cm} (3)
| |
− | \]
| |
− | </cmath>
| |
− | | |
− | Taking <math>(2) - (1)</math>, we get <math>r + 2 = 8 - r</math>. Thus, <math>r = 3</math>.
| |
− | We can further compute (omitted here) that there exist feasible <math>(u,v)</math> with this given <math>r</math>.
| |
− | | |
− | Case 4: <math>C_1</math> is internally tangent to <math>C_0</math> and <math>C_3</math> is internally tangent to <math>C_0</math>.
| |
− | | |
− | We have
| |
− | <cmath>
| |
− | \[
| |
− | u^2 + v^2 = \left( r - 2 \right)^2 \hspace{1cm} (2)
| |
− | \]
| |
− | </cmath>
| |
− | and
| |
− | <cmath>
| |
− | \[
| |
− | (u-5)^2 + v^2 = \left( r - \sqrt{3} \right)^2 . \hspace{1cm} (3)
| |
− | \]
| |
− | </cmath>
| |
− | | |
− | Taking <math>(2) - (1)</math>, we get <math>r - 2 = 8 - r</math>. Thus, <math>r = 5</math>.
| |
− | We can further compute (omitted here) that there exist feasible <math>(u,v)</math> with this given <math>r</math>.
| |
− | | |
− | | |
− | Because the graph is symmetric with the <math>x</math>-axis, and for each case above, the solution of <math>v</math> is not 0. Hence, in each case, there are two congruent circles whose centers are symmetric through the <math>x</math>-axis.
| |
− | | |
− | Therefore, the sum of the areas of
| |
− | all the circles in <math>S</math> is
| |
− | <math></math>
| |
− | \[
| |
− | 2 \left( \pi 3^2 + \pi 5^2 + \pi 3^2 + \pi 5^2 \right)
| |
− | = \boxed{\textbf{(E) <math>136 \pi</math>}} .
| |
− | \]
| |
− | <math></math>
| |
− | | |
− | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
| |
− | | |
− | ==Video Solution==
| |
− | | |
− | https://youtu.be/nqE5QYkzRAw
| |
− | | |
− | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
| |
− | | |
− | {{AMC12 box|year=2022|ab=B|num-b=20|num-a=22}}
| |
− | {{AMC10 box|year=2022|ab=B|num-b=21|num-a=23}}
| |
− | {{MAA Notice}}
| |