Difference between revisions of "2021 AMC 12B Problems/Problem 3"

m (Video Solution 1)
(Video Solution)
 
(One intermediate revision by one other user not shown)
Line 24: Line 24:
  
 
~IceMatrix
 
~IceMatrix
 +
 +
==Video Solution (Just 1 min!)==
 +
https://youtu.be/UhoVUqZjfhg
 +
 +
~Education, the Study of Everything
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021|ab=B|num-b=2|num-a=4}}
 
{{AMC12 box|year=2021|ab=B|num-b=2|num-a=4}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 22:50, 18 July 2023

Problem

Suppose\[2+\frac{1}{1+\frac{1}{2+\frac{2}{3+x}}}=\frac{144}{53}.\]What is the value of $x?$

$\textbf{(A) }\frac34 \qquad \textbf{(B) }\frac78 \qquad \textbf{(C) }\frac{14}{15} \qquad \textbf{(D) }\frac{37}{38} \qquad \textbf{(E) }\frac{52}{53}$

Solution

Subtracting $2$ from both sides and taking reciprocals gives $1+\frac{1}{2+\frac{2}{3+x}}=\frac{53}{38}$. Subtracting $1$ from both sides and taking reciprocals again gives $2+\frac{2}{3+x}=\frac{38}{15}$. Subtracting $2$ from both sides and taking reciprocals for the final time gives $\frac{x+3}{2}=\frac{15}{8}$ or $x=\frac{3}{4} \implies \boxed{\text{A}}$.

~ OlympusHero

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=qpvS2PVkI8A&t=127s

Video Solution by OmegaLearn (Algebraic Manipulations)

https://youtu.be/WskJI8_7Gk0

~ pi_is_3.14

Video Solution by Hawk Math

https://www.youtube.com/watch?v=VzwxbsuSQ80

Video Solution by TheBeautyofMath

https://youtu.be/EMzdnr1nZcE?t=384

~IceMatrix

Video Solution (Just 1 min!)

https://youtu.be/UhoVUqZjfhg

~Education, the Study of Everything

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png