Difference between revisions of "1981 AHSME Problems/Problem 25"

(added solution and fixed formatting)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
## Problem 25
+
__FORCETOC__
 +
 
 +
== Problem ==
 
In <math>\triangle ABC</math> in the adjoining figure, <math>AD</math> and <math>AE</math> trisect <math>\angle BAC</math>. The lengths of <math>BD</math>, <math>DE</math> and <math>EC</math> are <math>2</math>, <math>3</math>, and <math>6</math>, respectively. The length of the shortest side of <math>\triangle ABC</math> is
 
In <math>\triangle ABC</math> in the adjoining figure, <math>AD</math> and <math>AE</math> trisect <math>\angle BAC</math>. The lengths of <math>BD</math>, <math>DE</math> and <math>EC</math> are <math>2</math>, <math>3</math>, and <math>6</math>, respectively. The length of the shortest side of <math>\triangle ABC</math> is
  
[asy] defaultpen(linewidth(.8pt)); pair A = (0,11); pair B = (2,0); pair D = (4,0); pair E = (7,0); pair C = (13,0); label("<math>A</math>",A,N); label("<math>B</math>",B,SW); label("<math>C</math>",C,SE); label("<math>D</math>",D,S); label("<math>E</math>",E,S); label("<math>2</math>",midpoint(B--D),N); label("<math>3</math>",midpoint(D--E),NW); label("<math>6</math>",midpoint(E--C),NW); draw(A--B--C--cycle); draw(A--D); draw(A--E); [/asy]
+
<asy>
 +
defaultpen(linewidth(.8pt));
 +
pair A = (0,11);
 +
pair B = (2,0);
 +
pair D = (4,0);
 +
pair E = (7,0);
 +
pair C = (13,0);
 +
label("$A$",A,N);
 +
label("$B$",B,SW);
 +
label("$C$",C,SE);
 +
label("$D$",D,S);
 +
label("$E$",E,S);
 +
label("$2$",midpoint(B--D),N);
 +
label("$3$",midpoint(D--E),NW);
 +
label("$6$",midpoint(E--C),NW);
 +
draw(A--B--C--cycle);
 +
draw(A--D);
 +
draw(A--E);
 +
</asy>
  
 
<math>\textbf{(A)}\ 2\sqrt{10}\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 6\sqrt{6}\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ \text{not uniquely determined by the given information}</math>
 
<math>\textbf{(A)}\ 2\sqrt{10}\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 6\sqrt{6}\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ \text{not uniquely determined by the given information}</math>
  
## Solution
+
== Solution ==
  
 
Let <math>AC=b</math>, <math>AB=c</math>, <math>AD=d</math>, and <math>AE=e</math>. Then, by the Angle Bisector Theorem, <math>\frac{c}{e}=\frac{2}{3}</math> and <math>\frac{d}{b}=\frac12</math>, thus <math>e=\frac{3c}2</math> and <math>d=\frac b2</math>.
 
Let <math>AC=b</math>, <math>AB=c</math>, <math>AD=d</math>, and <math>AE=e</math>. Then, by the Angle Bisector Theorem, <math>\frac{c}{e}=\frac{2}{3}</math> and <math>\frac{d}{b}=\frac12</math>, thus <math>e=\frac{3c}2</math> and <math>d=\frac b2</math>.
Line 12: Line 32:
 
Also, by Stewart’s Theorem, <math>198+11d^2=2b^2+9c^2</math> and <math>330+11e^2=5b^2+6c^2</math>. Therefore, we have the following system of equations using our substitution from earlier:
 
Also, by Stewart’s Theorem, <math>198+11d^2=2b^2+9c^2</math> and <math>330+11e^2=5b^2+6c^2</math>. Therefore, we have the following system of equations using our substitution from earlier:
  
<math>{198=3b24+9c2330=5b275c24</math>.
+
<cmath>{198=3b24+9c2330=5b275c24.</cmath>
  
 
Thus, we have:
 
Thus, we have:
  
<math>{264=b2+12c2264=4b215c2</math>.
+
<cmath>{264=b2+12c2264=4b215c2.</cmath>
  
 
Therefore, <math>5b^2=27c^2</math>, so <math>b^2=\frac{27c^2}5</math>, thus our first equation from earlier gives <math>264=\frac{33c^2}{5}</math>, so <math>c^2=40</math>, thus <math>b^2=216</math>. So, <math>c<b</math> and the answer to the original problem is <math>c=\sqrt{40}=\boxed{2\sqrt{10}~\textbf{(A)}}</math>.
 
Therefore, <math>5b^2=27c^2</math>, so <math>b^2=\frac{27c^2}5</math>, thus our first equation from earlier gives <math>264=\frac{33c^2}{5}</math>, so <math>c^2=40</math>, thus <math>b^2=216</math>. So, <math>c<b</math> and the answer to the original problem is <math>c=\sqrt{40}=\boxed{2\sqrt{10}~\textbf{(A)}}</math>.
  
[[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]] ([[User talk:Aops-g5-gethsemanea2|talk]]) 01:47, 9 August 2023 (EDT)
+
~ [[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]]
 +
 
 +
{{AHSME box|year=1981|num-b=24|num-a=26}}

Latest revision as of 20:01, 9 August 2023


Contents

 [hide

Problem

In $\triangle ABC$ in the adjoining figure, $AD$ and $AE$ trisect $\angle BAC$. The lengths of $BD$, $DE$ and $EC$ are $2$, $3$, and $6$, respectively. The length of the shortest side of $\triangle ABC$ is

[asy] defaultpen(linewidth(.8pt)); pair A = (0,11); pair B = (2,0); pair D = (4,0); pair E = (7,0); pair C = (13,0); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,S); label("$E$",E,S); label("$2$",midpoint(B--D),N); label("$3$",midpoint(D--E),NW); label("$6$",midpoint(E--C),NW); draw(A--B--C--cycle); draw(A--D); draw(A--E); [/asy]

$\textbf{(A)}\ 2\sqrt{10}\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 6\sqrt{6}\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ \text{not uniquely determined by the given information}$

Solution

Let $AC=b$, $AB=c$, $AD=d$, and $AE=e$. Then, by the Angle Bisector Theorem, $\frac{c}{e}=\frac{2}{3}$ and $\frac{d}{b}=\frac12$, thus $e=\frac{3c}2$ and $d=\frac b2$.

Also, by Stewart’s Theorem, $198+11d^2=2b^2+9c^2$ and $330+11e^2=5b^2+6c^2$. Therefore, we have the following system of equations using our substitution from earlier:

\[\begin{cases}198=-\frac{3b^2}4+9c^2\\330=5b^2-\frac{75c^2}{4}\end{cases}.\]

Thus, we have:

\[\begin{cases}264=-b^2+12c^2\\264=4b^2-15c^2\end{cases}.\]

Therefore, $5b^2=27c^2$, so $b^2=\frac{27c^2}5$, thus our first equation from earlier gives $264=\frac{33c^2}{5}$, so $c^2=40$, thus $b^2=216$. So, $c<b$ and the answer to the original problem is $c=\sqrt{40}=\boxed{2\sqrt{10}~\textbf{(A)}}$.

~ Aops-g5-gethsemanea2

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Problem 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions