Difference between revisions of "2003 AMC 10A Problems/Problem 13"
(added problem and solution) |
|||
Line 20: | Line 20: | ||
Therefore, the product of all three numbers is <math>xyz=16\cdot\frac{7}{2}\cdot\frac{1}{2}=28 \Rightarrow A</math> | Therefore, the product of all three numbers is <math>xyz=16\cdot\frac{7}{2}\cdot\frac{1}{2}=28 \Rightarrow A</math> | ||
+ | |||
+ | Alternatively, we can set up the system in matrix form: | ||
+ | |||
+ | <math>x+y+z=20</math> | ||
+ | |||
+ | <math>x=4(y+z)=4y+4z</math> | ||
+ | |||
+ | <math>y=7z</math> | ||
+ | |||
+ | is equivalent to | ||
+ | |||
+ | <math>1x+1y+1z=20</math> | ||
+ | |||
+ | <math>1x-4y-4z=0</math> | ||
+ | |||
+ | <math>0x+1y-7z=0</math> | ||
+ | |||
+ | Or, in matrix form | ||
+ | |||
+ | \begin{bmatrix} | ||
+ | 1 & 1 & 1 \ | ||
+ | 1 & -4 & -4 \ | ||
+ | 0 & 1 & -7 | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | x \ | ||
+ | y \ | ||
+ | z \ | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \begin{bmatrix} | ||
+ | 20 \ | ||
+ | 0 \ | ||
+ | 0 \ | ||
+ | \end{bmatrix} | ||
+ | |||
+ | To solve this matrix equation, we can rearrange it thus: | ||
+ | \begin{bmatrix} | ||
+ | x \ | ||
+ | y \ | ||
+ | z \ | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \begin{bmatrix} | ||
+ | 1 & 1 & 1 \ | ||
+ | 1 & -4 & -4 \ | ||
+ | 0 & 1 & -7 | ||
+ | \end{bmatrix} | ||
+ | <sup>-1</sup> | ||
+ | \begin{bmatrix} | ||
+ | 20 \ | ||
+ | 0 \ | ||
+ | 0 \ | ||
+ | \end{bmatrix} | ||
+ | |||
+ | Solving this matrix equation by using [[inverse matrices]] and [[matrix multiplication]] yields | ||
+ | \begin{bmatrix} | ||
+ | x \ | ||
+ | y \ | ||
+ | z \ | ||
+ | \end{bmatrix} | ||
+ | = | ||
+ | \begin{bmatrix} | ||
+ | 0.5 \ | ||
+ | 3.5 \ | ||
+ | 16 \ | ||
+ | \end{bmatrix} | ||
+ | Which means that x = 0.5, y = 3.5, and z = 16. Therefore, xyz = (0.5)(3.5)(16) = 28 | ||
+ | |||
+ | |||
+ | |||
+ | |||
== See Also == | == See Also == | ||
*[[2003 AMC 10A Problems]] | *[[2003 AMC 10A Problems]] |
Revision as of 17:21, 21 November 2007
Problem
The sum of three numbers is . The first is four times the sum of the other two. The second is seven times the third. What is the product of all three?
Solution
Let the numbers be , , and in that order.
Therefore, the product of all three numbers is
Alternatively, we can set up the system in matrix form:
is equivalent to
Or, in matrix form
\begin{bmatrix} 1 & 1 & 1 \\ 1 & -4 & -4 \\ 0 & 1 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix}
=
\begin{bmatrix} 20 \\ 0 \\ 0 \\ \end{bmatrix}
To solve this matrix equation, we can rearrange it thus:
\begin{bmatrix} x \\ y \\ z \\ \end{bmatrix}
=
\begin{bmatrix} 1 & 1 & 1 \\ 1 & -4 & -4 \\ 0 & 1 & -7 \end{bmatrix}
-1
\begin{bmatrix} 20 \\ 0 \\ 0 \\ \end{bmatrix}
Solving this matrix equation by using inverse matrices and matrix multiplication yields
\begin{bmatrix} x \\ y \\ z \\ \end{bmatrix}
=
\begin{bmatrix} 0.5 \\ 3.5 \\ 16 \\ \end{bmatrix}
Which means that x = 0.5, y = 3.5, and z = 16. Therefore, xyz = (0.5)(3.5)(16) = 28