Difference between revisions of "1998 AHSME Problems/Problem 28"

(solution)
 
(Solution 4)
 
(21 intermediate revisions by 10 users not shown)
Line 4: Line 4:
 
<math> \mathrm{(A) \ }10 \qquad \mathrm{(B) \ }14 \qquad \mathrm{(C) \ }18 \qquad \mathrm{(D) \ }22 \qquad \mathrm{(E) \ } 26</math>
 
<math> \mathrm{(A) \ }10 \qquad \mathrm{(B) \ }14 \qquad \mathrm{(C) \ }18 \qquad \mathrm{(D) \ }22 \qquad \mathrm{(E) \ } 26</math>
  
__TOC__
+
== Solution 1==  
== Solution == <!-- geometric solution to come -->
 
=== Solution 1 (trigonometry) ===
 
 
Let <math>\theta = \angle DAB</math>, so <math>2\theta = \angle CAD</math> and <math>3 \theta = \angle CAB</math>. Then, it is given that <math>\cos 2\theta = \frac{AC}{AD} = \frac{2}{3}</math> and
 
Let <math>\theta = \angle DAB</math>, so <math>2\theta = \angle CAD</math> and <math>3 \theta = \angle CAB</math>. Then, it is given that <math>\cos 2\theta = \frac{AC}{AD} = \frac{2}{3}</math> and
  
Line 20: Line 18:
  
 
and <math>\frac{CD}{BD} = \frac{5}{9} \Longrightarrow m+n = 14 \Longrightarrow \mathbf{(B)}</math>. (This also may have been done on a calculator by finding <math>\theta</math> directly)
 
and <math>\frac{CD}{BD} = \frac{5}{9} \Longrightarrow m+n = 14 \Longrightarrow \mathbf{(B)}</math>. (This also may have been done on a calculator by finding <math>\theta</math> directly)
 +
 +
== Solution 2 ==
 +
By the application of ratio lemma for <math>\frac{CD}{BD}</math>, we get <math>\frac{CD}{BD} = 2\cos{3A}\cos{A}</math>, where we let <math>A = \angle{DAB}</math>. We already know <math>\cos{2A}</math> hence the rest is easy
 +
 +
==Solution 3==
 +
 +
Let <math>AC=2</math> and <math>AD=3</math>. By the Pythagorean Theorem, <math>CD=\sqrt{5}</math>. Let point <math>P</math> be on segment <math>CD</math> such that <math>AP</math> bisects <math>\angle CAD</math>. Thus, angles <math>CAP</math>, <math>PAD</math>, and <math>DAB</math> are congruent. Applying the angle bisector theorem on <math>ACD</math>, we get that <math>CP=\frac{2\sqrt{5}}{5}</math> and <math>PD=\frac{3\sqrt{5}}{5}</math>. Pythagorean Theorem gives <math>AP=\frac{\sqrt{5}\sqrt{24}}{5}</math>.
 +
 +
Let <math>DB=x</math>. By the Pythagorean Theorem, <math>AB=\sqrt{(x+\sqrt{5})^{2}+2^2}</math>. Applying the angle bisector theorem again on triangle <math>APB</math>, we have <cmath>\frac{\sqrt{(x+\sqrt{5})^{2}+2^2}}{x}=\frac{\frac{\sqrt{5}\sqrt{24}}{5}}{\frac{3\sqrt{5}}{5}}</cmath>
 +
The right side simplifies to<math>\frac{\sqrt{24}}{3}</math>. Cross multiplying, squaring, and simplifying, we get a quadratic: <cmath>5x^2-6\sqrt{5}x-27=0</cmath> Solving this quadratic and taking the positive root gives <cmath>x=\frac{9\sqrt{5}}{5}</cmath> Finally, taking the desired ratio and canceling the roots gives <math>\frac{CD}{BD}=\frac{5}{9}</math>. The answer is <math>\fbox{(B) 14}</math>.
 +
 +
==Solution 4==
 +
 +
Let <math>AC = 2</math>, <math>AD = 3</math>. <math>\cos \angle CAD = \frac23</math>
 +
 +
By the pythagorean theorem <math>CD = \sqrt{3^2-2^2} = \sqrt{5}</math>
 +
 +
<math>\sin \angle BDA = \sin (180^{\circ} - \angle BDA) = \sin \angle CDA = \cos \angle (90^{\circ} - CDA) = \cos \angle CAD = \frac23</math>
 +
 +
<math>\sin \angle BAD = \sqrt{ \frac{1-cos (2\angle BAD)}{2} } = \sqrt{ \frac{1-\cos \angle CAD}{2} } = \sqrt{ \frac{1-\frac23}{2} } = \frac{\sqrt{6}}{6}</math>
 +
 +
By the Law of Sine, <math>\frac{ \sin \angle BDA }{AB} = \frac{ \sin \angle BAD }{BD}</math>
 +
 +
<math>\frac{ \frac23 }{ \sqrt{2^2 + ( \sqrt{5} + BD)^2} } = \frac{ \frac{\sqrt{6}}{6} }{BD}</math>
 +
 +
<math>8BD^2 = 3(9+ 2BD \sqrt{5} + BD^2)</math>
 +
 +
<math>5BD^2 - 6 BD \sqrt{5} -27=0</math>
 +
 +
As <math>BD>0</math>, <math>BD = \frac{6 \sqrt{5} + \sqrt{ (6 \sqrt{5})^2 - 4 \cdot 5 (-27) } }{10} = \frac{9\sqrt{5}}{5}</math>
 +
 +
<math>\frac{CD}{BD} = \frac{\sqrt{5}}{\frac{9\sqrt{5}}{5}} = \frac59</math>.
 +
 +
<math>5+9=\boxed{\textbf{(B) } 14}</math>.
 +
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
  
 
== See also ==
 
== See also ==
Line 26: Line 60:
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Trigonometry Problems]]
 
[[Category:Intermediate Trigonometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 23:51, 2 October 2023

Problem

In triangle $ABC$, angle $C$ is a right angle and $CB > CA$. Point $D$ is located on $\overline{BC}$ so that angle $CAD$ is twice angle $DAB$. If $AC/AD = 2/3$, then $CD/BD = m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

$\mathrm{(A) \ }10 \qquad \mathrm{(B) \ }14 \qquad \mathrm{(C) \ }18 \qquad \mathrm{(D) \ }22 \qquad \mathrm{(E) \ } 26$

Solution 1

Let $\theta = \angle DAB$, so $2\theta = \angle CAD$ and $3 \theta = \angle CAB$. Then, it is given that $\cos 2\theta = \frac{AC}{AD} = \frac{2}{3}$ and


$\frac{BD}{CD} = \frac{AC(\tan 3\theta - \tan 2\theta)}{AC \tan 2\theta} = \frac{\tan 3\theta}{\tan 2\theta} - 1.$


Now, through the use of trigonometric identities, $\cos 2\theta = 2\cos^2 \theta - 1 = \frac{2}{\sec ^2 \theta} - 1 = \frac{1 - \tan^2 \theta}{1 + \tan ^2 \theta} = \frac{2}{3}$. Solving yields that $\tan^2 \theta = \frac 15$. Using the tangent addition identity, we find that $\tan 2\theta = \frac{2\tan \theta}{1 - \tan ^2 \theta},\ \tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$, and


$\frac{BD}{CD} = \frac{\tan 3\theta}{\tan 2\theta} - 1 = \frac{(3 - \tan^2 \theta)(1-\tan ^2 \theta)}{2(1 - 3\tan^2 \theta)} - 1 = \frac{(1 + \tan^2 \theta)^2}{2(1 - 3\tan^2 \theta)} = \frac{9}{5}$


and $\frac{CD}{BD} = \frac{5}{9} \Longrightarrow m+n = 14 \Longrightarrow \mathbf{(B)}$. (This also may have been done on a calculator by finding $\theta$ directly)

Solution 2

By the application of ratio lemma for $\frac{CD}{BD}$, we get $\frac{CD}{BD} = 2\cos{3A}\cos{A}$, where we let $A = \angle{DAB}$. We already know $\cos{2A}$ hence the rest is easy

Solution 3

Let $AC=2$ and $AD=3$. By the Pythagorean Theorem, $CD=\sqrt{5}$. Let point $P$ be on segment $CD$ such that $AP$ bisects $\angle CAD$. Thus, angles $CAP$, $PAD$, and $DAB$ are congruent. Applying the angle bisector theorem on $ACD$, we get that $CP=\frac{2\sqrt{5}}{5}$ and $PD=\frac{3\sqrt{5}}{5}$. Pythagorean Theorem gives $AP=\frac{\sqrt{5}\sqrt{24}}{5}$.

Let $DB=x$. By the Pythagorean Theorem, $AB=\sqrt{(x+\sqrt{5})^{2}+2^2}$. Applying the angle bisector theorem again on triangle $APB$, we have \[\frac{\sqrt{(x+\sqrt{5})^{2}+2^2}}{x}=\frac{\frac{\sqrt{5}\sqrt{24}}{5}}{\frac{3\sqrt{5}}{5}}\] The right side simplifies to$\frac{\sqrt{24}}{3}$. Cross multiplying, squaring, and simplifying, we get a quadratic: \[5x^2-6\sqrt{5}x-27=0\] Solving this quadratic and taking the positive root gives \[x=\frac{9\sqrt{5}}{5}\] Finally, taking the desired ratio and canceling the roots gives $\frac{CD}{BD}=\frac{5}{9}$. The answer is $\fbox{(B) 14}$.

Solution 4

Let $AC = 2$, $AD = 3$. $\cos \angle CAD = \frac23$

By the pythagorean theorem $CD = \sqrt{3^2-2^2} = \sqrt{5}$

$\sin \angle BDA = \sin (180^{\circ} - \angle BDA) = \sin \angle CDA = \cos \angle (90^{\circ} - CDA) = \cos \angle CAD = \frac23$

$\sin \angle BAD = \sqrt{ \frac{1-cos (2\angle BAD)}{2} } = \sqrt{ \frac{1-\cos \angle CAD}{2} } = \sqrt{ \frac{1-\frac23}{2} } = \frac{\sqrt{6}}{6}$

By the Law of Sine, $\frac{ \sin \angle BDA }{AB} = \frac{ \sin \angle BAD }{BD}$

$\frac{ \frac23 }{ \sqrt{2^2 + ( \sqrt{5} + BD)^2} } = \frac{ \frac{\sqrt{6}}{6} }{BD}$

$8BD^2 = 3(9+ 2BD \sqrt{5} + BD^2)$

$5BD^2 - 6 BD \sqrt{5} -27=0$

As $BD>0$, $BD = \frac{6 \sqrt{5} + \sqrt{ (6 \sqrt{5})^2 - 4 \cdot 5 (-27) } }{10} = \frac{9\sqrt{5}}{5}$

$\frac{CD}{BD} = \frac{\sqrt{5}}{\frac{9\sqrt{5}}{5}} = \frac59$.

$5+9=\boxed{\textbf{(B) } 14}$.

~isabelchen

See also

1998 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 27
Followed by
Problem 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png