Difference between revisions of "2023 AMC 12B Problems/Problem 9"
Equation1011 (talk | contribs) (→22) |
Mathkiddus (talk | contribs) m (→Solution 1) |
||
Line 9: | Line 9: | ||
<math>\text{(A)}\ 2 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 12</math> | <math>\text{(A)}\ 2 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 12</math> | ||
− | ==Solution== | + | ==Solution 1== |
First consider, <math>|x-1|+|y-1| \le 1.</math> | First consider, <math>|x-1|+|y-1| \le 1.</math> | ||
We can see that it's a square with radius 1 (diagonal 2). The area of the square is <math>\sqrt{2}^2 = 2.</math> | We can see that it's a square with radius 1 (diagonal 2). The area of the square is <math>\sqrt{2}^2 = 2.</math> |
Revision as of 19:47, 16 November 2023
- The following problem is from both the 2023 AMC 10B #13 and 2023 AMC 12B #9, so both problems redirect to this page.
Contents
[hide]Problem
What is the area of the region in the coordinate plane defined by
?
Solution 1
First consider, We can see that it's a square with radius 1 (diagonal 2). The area of the square is
Next, we add one more absolute value and get This will double the square reflecting over x-axis.
So now we got 2 squares.
Finally, we add one more absolute value and get This will double the squares reflecting over y-axis.
In the end, we got 4 squares. The total area is
~Technodoggo ~Minor formatting change: e_is_2.71828
Solution 2 (Graphing)
We first consider the lattice points that satisfy and . The lattice points satisfying these equations are and By symmetry, we also have points and when and . Graphing and connecting these points, we form 5 squares. However, we can see that any point within the square in the middle does not satisfy the given inequality (take , for instance). As noted in the above solution, each square has a diagonal for an area of , so the total area is
~ Brian__Liu
Note
This problem is very similar to a past AIME problem (1997 P13)
https://artofproblemsolving.com/wiki/index.php/1997_AIME_Problems/Problem_13
~ CherryBerry
Solution 3 (Logic)
The value of and can be a maximum of 1 when the other is 0. Therefore the value of and range from -2 to 2. This forms a diamond shape which has area which is
~ darrenn.cp ~ DarkPheonix
Video Solution 1 by OmegaLearn
See Also
2023 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2023 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.