Difference between revisions of "2002 AMC 12P Problems"
Line 174: | Line 174: | ||
What is the maximum value of <math>n</math> for which there is a set of distinct positive integers <math>k_1, k_2, ... k_n</math> for which | What is the maximum value of <math>n</math> for which there is a set of distinct positive integers <math>k_1, k_2, ... k_n</math> for which | ||
− | < | + | <cmath>k^2_1 + k^2_2 + ... + k^2_n = 2002?</cmath> |
<math> | <math> | ||
Line 192: | Line 192: | ||
== Problem 14 == | == Problem 14 == | ||
− | Find <math>i + 2i^2 +3i^3 + ... + 2002i^2002.</math> | + | Find <math>i + 2i^2 +3i^3 + ... + 2002i^{2002}.</math> |
<math> | <math> | ||
Line 230: | Line 230: | ||
<math> | <math> | ||
− | \text{(A) }72^ | + | \text{(A) }72^{\circ} |
\qquad | \qquad | ||
− | \text{(B) }75^ | + | \text{(B) }75^{\circ} |
\qquad | \qquad | ||
− | \text{(C) }90^ | + | \text{(C) }90^{\circ} |
\qquad | \qquad | ||
− | \text{(D) }108^ | + | \text{(D) }108^{\circ} |
\qquad | \qquad | ||
− | \text{(E) }120^ | + | \text{(E) }120^{\circ} |
</math> | </math> | ||
Line 262: | Line 262: | ||
== Problem 18 == | == Problem 18 == | ||
− | + | If </math>a,b,c<math> are real numbers such that </math>a^2 + 2b=7, b^2 + 4c = -7,<math> and </math>c^2+6a = -14,<math> find </math>a^2+b^2+c^2.<math> | |
− | < | + | </math> |
− | + | \text{(A) }14 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | \text{(A) } | ||
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) }21 |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) }28 |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }35 |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }49 |
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 18|Solution]] | [[2002 AMC 12P Problems/Problem 18|Solution]] | ||
Line 298: | Line 280: | ||
== Problem 19 == | == Problem 19 == | ||
− | + | In quadrilateral </math>ABCD<math>, </math>m\angle B = m\angle C = 120^{\circ}, AB=3, BC=4,<math> and </math>CD=5.<math> Find the area of </math>ABCD.<math> | |
− | + | </math> | |
− | + | \text{(A) }15 | |
− | \text{(A) } | ||
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) }9 \sqrt{3} |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) }\frac{45 \sqrt{3}}{4} |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }\frac{47 \sqrt{3}}{4} |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }15 \sqrt{3} |
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 19|Solution]] | [[2002 AMC 12P Problems/Problem 19|Solution]] | ||
Line 316: | Line 297: | ||
== Problem 20 == | == Problem 20 == | ||
− | + | Let </math>f<math> be a real-valued function such that | |
+ | <cmath>f(x) + 2f(\frac{2002}{x})=3x</cmath> | ||
+ | for all </math>x>0<math>. Find </math>f(2).<math> | ||
− | <math> | + | </math> |
− | \text{(A) } | + | \text{(A) }1000 |
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) }2000 |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) }3000 |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }4000 |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }6000 |
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 20|Solution]] | [[2002 AMC 12P Problems/Problem 20|Solution]] | ||
Line 334: | Line 317: | ||
== Problem 21 == | == Problem 21 == | ||
− | + | Let </math>a<math> and </math>b<math> be real numbers greater than </math>1<math> for which there exists a positive real number </math>c<math>, different from </math>1<math>, such that | |
+ | <cmath>2(log_a c + log_b c)=9log_{ab} c</cmath> | ||
− | + | </math> | |
− | + | \text{(A) }\sqrt{2} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | \text{(A) } | ||
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) }\sqrt{3} |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) }2 |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }\sqrt{6} |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }\sqrt{3} |
− | < | + | <math> |
[[2001 AMC 12 Problems/Problem 21|Solution]] | [[2001 AMC 12 Problems/Problem 21|Solution]] | ||
Line 364: | Line 336: | ||
== Problem 22 == | == Problem 22 == | ||
− | + | Under the new AMC </math>10<math>, </math>12<math> scoring method, </math>6<math> points are given for each correct answer, </math>2.5<math> points are given for each unanswered question, and no points are given for an incorrect answer. Some of the possible scores between </math>0<math> and </math>150<math> can be obtained in only one way, for example, the only way to obtain a score of </math>146.5<math> is to have </math>24<math> correct answers and one unanswered question. Some scores can be obtained in exactly two ways; for example, a score of </math>104.5<math> can be obtained with </math>17<math> correct answers, </math>1<math> unanswered question, and </math>7<math> incorrect, and also with </math>12<math> correct answers and </math>13<math> unanswered questions. There are scores that can be obtained in exactly three ways. What is their sum? | |
− | <math> | + | </math> |
− | \text{(A) } | + | \text{(A) }175 |
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) }179.5 |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) }182 |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }188.5 |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }201 |
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 22|Solution]] | [[2002 AMC 12P Problems/Problem 22|Solution]] | ||
Line 382: | Line 354: | ||
== Problem 23 == | == Problem 23 == | ||
− | + | The equation </math>z(z+i)(z+3i)=2002i<math> has a zero of the form </math>a+bi,<math> where </math>a<math> and </math>b<math> are positive real numbers. Find </math>a.<math> | |
− | <math> | + | </math> |
− | \text{(A) } | + | \text{(A) }\sqrt{118} |
\qquad | \qquad | ||
− | \text{(B) }\ | + | \text{(B) }\sqrt{210} |
\qquad | \qquad | ||
− | \text{(C) }\ | + | \text{(C) }2 \sqrt{210} |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }\sqrt{2002} |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }100 \sqrt{2} |
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 23|Solution]] | [[2002 AMC 12P Problems/Problem 23|Solution]] | ||
Line 400: | Line 372: | ||
== Problem 24 == | == Problem 24 == | ||
− | + | Let </math>ABCD<math> be a regular tetrahedron and let </math>E<math> be a point inside the face </math>ABC.<math> Denote by </math>s<math> the sum of the distances from </math>E<math> to the faces </math>DAB, DBC, DCA,<math> and by </math>S<math> the sum of the distances from </math>E<math> to the edges </math>AB, BC, CA.<math> Then </math>\frac{s}{S}<math> equals | |
− | <math> | + | </math> |
− | \text{(A) } | + | \text{(A) }\sqrt {2} |
\qquad | \qquad | ||
− | \text{(B) } | + | \text{(B) }\frac{2 \sqrt{2}}{3} |
\qquad | \qquad | ||
− | \text{(C) } | + | \text{(C) }\frac{\sqrt(6)}{2} |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }2 |
\qquad | \qquad | ||
− | \text{(E) } | + | \text{(E) }3 |
− | < | + | <math> |
[[2002 AMC 12P Problems/Problem 24|Solution]] | [[2002 AMC 12P Problems/Problem 24|Solution]] | ||
Line 418: | Line 390: | ||
== Problem 25 == | == Problem 25 == | ||
− | + | Let </math>a<math> and </math>b<math> be real numbers such that </math>sin a + sin b = \frac{\sqrt{2}}{2}<math> and | |
− | <math> | + | </math> |
− | \text{(A) }1 | + | \text{(A) }\frac{1}{2} |
\qquad | \qquad | ||
− | \text{(B) }2 | + | \text{(B) }\frac{\sqrt{2}}{2} |
\qquad | \qquad | ||
− | \text{(C) }3 | + | \text{(C) }\frac{\sqrt{3}}{2} |
\qquad | \qquad | ||
− | \text{(D) } | + | \text{(D) }\frac{\sqrt{6}}{2} |
\qquad | \qquad | ||
− | \text{(E) | + | \text{(E) }1 |
− | + | $ | |
[[2002 AMC 12P Problems/Problem 25|Solution]] | [[2002 AMC 12P Problems/Problem 25|Solution]] |
Revision as of 22:09, 29 December 2023
2002 AMC 12P (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
[hide]Problem 1
Which of the following numbers is a perfect square?
Problem 2
The function is given by the table
If and
for
, find
Problem 3
The dimensions of a rectangular box in inches are all positive integers and the volume of the box is in^3. Find the minimum possible sum of the three dimensions.
Problem 4
Let and
be distinct real numbers for which
Find
Problem 5
For how many positive integers is
Problem 6
Participation in the local soccer league this year is $10%$ (Error compiling LaTeX. Unknown error_msg) higher than last year. The number of males increased by $5%$ (Error compiling LaTeX. Unknown error_msg) and the number of females increased by $20%$ (Error compiling LaTeX. Unknown error_msg). What fraction of the soccer league is now female?
Problem 7
How many three-digit numbers have at least one 2 and at least one 3?
Problem 8
Let be a segment of length
, and let points
and
be located on
such that
and
. Let
and
be points on one of the semicircles with diameter
for which
and
are perpendicular to
. Find
Problem 9
Two walls and the ceiling of a room meet at right angles at point A fly is in the air one meter from one wall, eight meters from the other wall, and nine meters from point
. How many meters is the fly from the ceiling?
Problem 10
Let For how many
in [$0,π$ (Error compiling LaTeX. Unknown error_msg)] is it true that
Problem 11
Let be the
th triangular number. Find
Problem 12
For how many positive integers is
a prime number?
Problem 13
What is the maximum value of for which there is a set of distinct positive integers
for which
Problem 14
Find
Problem 15
There are 1001 black marbles in a box. Let
be the probability that two marbles drawn at random from the box are the same color, and let
be the probability that they are different colors. Find
Problem 16
The altitudes of a triangle are and
The largest angle in this triangle is
Problem 17
Let
\text{(A) }\frac {1}{5}
\qquad
\text{(B) }\frac {1}{4}
\qquad
\text{(C) }\frac {5}{16}
\qquad
\text{(D) }\frac {3}{8}
\qquad
\text{(E) }\frac {1}{2}
$[[2002 AMC 12P Problems/Problem 17|Solution]]
== Problem 18 ==
If$ (Error compiling LaTeX. Unknown error_msg)a,b,ca^2 + 2b=7, b^2 + 4c = -7,
c^2+6a = -14,
a^2+b^2+c^2.$$ (Error compiling LaTeX. Unknown error_msg)
\text{(A) }14
\qquad
\text{(B) }21
\qquad
\text{(C) }28
\qquad
\text{(D) }35
\qquad
\text{(E) }49
$[[2002 AMC 12P Problems/Problem 18|Solution]]
== Problem 19 ==
In quadrilateral$ (Error compiling LaTeX. Unknown error_msg)ABCDm\angle B = m\angle C = 120^{\circ}, AB=3, BC=4,
CD=5.
ABCD.$$ (Error compiling LaTeX. Unknown error_msg)
\text{(A) }15
\qquad
\text{(B) }9 \sqrt{3}
\qquad
\text{(C) }\frac{45 \sqrt{3}}{4}
\qquad
\text{(D) }\frac{47 \sqrt{3}}{4}
\qquad
\text{(E) }15 \sqrt{3}
$[[2002 AMC 12P Problems/Problem 19|Solution]]
== Problem 20 ==
Let$ (Error compiling LaTeX. Unknown error_msg)fx>0
f(2).$$ (Error compiling LaTeX. Unknown error_msg)
\text{(A) }1000
\qquad
\text{(B) }2000
\qquad
\text{(C) }3000
\qquad
\text{(D) }4000
\qquad
\text{(E) }6000
$[[2002 AMC 12P Problems/Problem 20|Solution]]
== Problem 21 ==
Let$ (Error compiling LaTeX. Unknown error_msg)ab
1
c
1
\text{(A) }\sqrt{2}
\qquad
\text{(B) }\sqrt{3}
\qquad
\text{(C) }2
\qquad
\text{(D) }\sqrt{6}
\qquad
\text{(E) }\sqrt{3}
$[[2001 AMC 12 Problems/Problem 21|Solution]]
== Problem 22 ==
Under the new AMC$ (Error compiling LaTeX. Unknown error_msg)1012
6
2.5
0
150
146.5
24
104.5
17
1
7
12
13
\text{(A) }175
\qquad
\text{(B) }179.5
\qquad
\text{(C) }182
\qquad
\text{(D) }188.5
\qquad
\text{(E) }201
$[[2002 AMC 12P Problems/Problem 22|Solution]]
== Problem 23 ==
The equation$ (Error compiling LaTeX. Unknown error_msg)z(z+i)(z+3i)=2002ia+bi,
a
b
a.$$ (Error compiling LaTeX. Unknown error_msg)
\text{(A) }\sqrt{118}
\qquad
\text{(B) }\sqrt{210}
\qquad
\text{(C) }2 \sqrt{210}
\qquad
\text{(D) }\sqrt{2002}
\qquad
\text{(E) }100 \sqrt{2}
$[[2002 AMC 12P Problems/Problem 23|Solution]]
== Problem 24 ==
Let$ (Error compiling LaTeX. Unknown error_msg)ABCDE
ABC.
s
E
DAB, DBC, DCA,
S
E
AB, BC, CA.
\frac{s}{S}
\text{(A) }\sqrt {2}
\qquad
\text{(B) }\frac{2 \sqrt{2}}{3}
\qquad
\text{(C) }\frac{\sqrt(6)}{2}
\qquad
\text{(D) }2
\qquad
\text{(E) }3
$[[2002 AMC 12P Problems/Problem 24|Solution]]
== Problem 25 ==
Let$ (Error compiling LaTeX. Unknown error_msg)ab
sin a + sin b = \frac{\sqrt{2}}{2}
\text{(A) }\frac{1}{2}
\qquad
\text{(B) }\frac{\sqrt{2}}{2}
\qquad
\text{(C) }\frac{\sqrt{3}}{2}
\qquad
\text{(D) }\frac{\sqrt{6}}{2}
\qquad
\text{(E) }1
$
See also
2001 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by 2000 AMC 12 Problems |
Followed by 2002 AMC 12A Problems |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.