Difference between revisions of "2002 AMC 12P Problems/Problem 2"

(Problem)
Line 1: Line 1:
== Problem ==
 
 
The function <math>f</math> is given by the table
 
The function <math>f</math> is given by the table
 +
 +
<cmath>
 +
\begin{tabular}{|c|c|c|c|c|c|}
 +
\hline
 +
x & 1 & 2 & 3 & 4 & 5 \
 +
\hline
 +
f(x) & 4 & 1 & 3 & 5 & 2 \
 +
\hline
 +
\end{tabular}
 +
</cmath>
  
 
If <math>u_0=4</math> and <math>u_{n+1} = f(u_n)</math> for <math>n \ge 0</math>, find <math>u_{2002}</math>
 
If <math>u_0=4</math> and <math>u_{n+1} = f(u_n)</math> for <math>n \ge 0</math>, find <math>u_{2002}</math>
  
<math>\text{(A) }1 \qquad \text{(B) }2 \qquad \text{(C) }3 \qquad \text{(D) }4 \qquad \text{(E) }5</math>
+
<math>
 +
\text{(A) }1
 +
\qquad
 +
\text{(B) }2
 +
\qquad
 +
\text{(C) }3
 +
\qquad
 +
\text{(D) }4
 +
\qquad
 +
\text{(E) }5
 +
</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 00:25, 30 December 2023

The function $f$ is given by the table

\[\begin{tabular}{|c|c|c|c|c|c|}  \hline   x & 1 & 2 & 3 & 4 & 5 \\   \hline  f(x) & 4 & 1 & 3 & 5 & 2 \\  \hline \end{tabular}\]

If $u_0=4$ and $u_{n+1} = f(u_n)$ for $n \ge 0$, find $u_{2002}$

$\text{(A) }1 \qquad \text{(B) }2 \qquad \text{(C) }3 \qquad \text{(D) }4 \qquad \text{(E) }5$

Solution

If $\log_{b} 729 = n$, then $b^n = 729$. Since $729 = 3^6$, $b$ must be $3$ to some factor of 6. Thus, there are four (3, 9, 27, 729) possible values of $b \Longrightarrow \boxed{\mathrm{E}}$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png