Difference between revisions of "2004 AMC 8 Problems/Problem 24"

(Solution)
m (Video Solution by Sohil Rathi (OmegaLearn))
(12 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
In the figure, <math>ABCD</math> is a rectangle and <math>EFGH</math> is a parallelogram. Using the measurements given in the figure, what is the length <math>d</math> of the segment that is perpendicular(altitude of parallelogram <math>EFGH</math>) to <math>\overline{HE}</math> and <math>\overline{FG}</math>?
+
In the figure, <math>ABCD</math> is a rectangle and <math>EFGH</math> is a parallelogram. Using the measurements given in the figure, what is the length <math>d</math> of the segment that is perpendicular to <math>\overline{HE}</math> and <math>\overline{FG}</math>?
  
 
<asy>
 
<asy>
Line 38: Line 38:
 
<math>\textbf{(A)}\ 6.8\qquad \textbf{(B)}\ 7.1\qquad \textbf{(C)}\ 7.6\qquad \textbf{(D)}\ 7.8\qquad \textbf{(E)}\ 8.1</math>
 
<math>\textbf{(A)}\ 6.8\qquad \textbf{(B)}\ 7.1\qquad \textbf{(C)}\ 7.6\qquad \textbf{(D)}\ 7.8\qquad \textbf{(E)}\ 8.1</math>
  
==Solution==
+
==Excellent Solution==
 
The area of the parallelogram can be found in two ways. The first is by taking rectangle <math>ABCD</math> and subtracting the areas of the triangles cut out to create parallelogram <math>EFGH</math>. This is
 
The area of the parallelogram can be found in two ways. The first is by taking rectangle <math>ABCD</math> and subtracting the areas of the triangles cut out to create parallelogram <math>EFGH</math>. This is
 
<cmath>(4+6)(5+3) - 2 \cdot \frac12 \cdot 6 \cdot 5 - 2 \cdot \frac12 \cdot 3 \cdot 4 = 80 - 30 - 12 = 38</cmath>
 
<cmath>(4+6)(5+3) - 2 \cdot \frac12 \cdot 6 \cdot 5 - 2 \cdot \frac12 \cdot 3 \cdot 4 = 80 - 30 - 12 = 38</cmath>
 
The second way is by multiplying the base of the parallelogram such as <math>\overline{FG}</math> with its altitude <math>d</math>, which is perpendicular to both bases. <math>\triangle FGC</math> is a <math>3-4-5</math> triangle so <math>\overline{FG} = 5</math>. Set these two representations of the area together.
 
The second way is by multiplying the base of the parallelogram such as <math>\overline{FG}</math> with its altitude <math>d</math>, which is perpendicular to both bases. <math>\triangle FGC</math> is a <math>3-4-5</math> triangle so <math>\overline{FG} = 5</math>. Set these two representations of the area together.
<cmath>5d = 38 \rightarrow d = \boxed{\textbf{(C)}\ 7.8}</cmath>
+
<cmath>5d = 38 \rightarrow d = \boxed{\textbf{(C)}\ 7.6}</cmath>
 +
 
 +
~Ak
 +
 
 +
==Video Solution by Sohil Rathi (Omega Learn)==
 +
https://youtu.be/abSgjn4Qs34?t=4
 +
 
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2004|num-b=23|num-a=25}}
 
{{AMC8 box|year=2004|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 11:35, 20 January 2024

Problem

In the figure, $ABCD$ is a rectangle and $EFGH$ is a parallelogram. Using the measurements given in the figure, what is the length $d$ of the segment that is perpendicular to $\overline{HE}$ and $\overline{FG}$?

[asy] unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(10pt));  pair D=(0,0), C=(10,0), B=(10,8), A=(0,8); pair E=(4,8), F=(10,3), G=(6,0), H=(0,5);  draw(A--B--C--D--cycle); draw(E--F--G--H--cycle);  label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW);  label("$E$",E,N); label("$F$",(10.8,3)); label("$G$",G,S); label("$H$",H,W);  label("$4$",A--E,N); label("$6$",B--E,N); label("$5$",(10.8,5.5)); label("$3$",(10.8,1.5)); label("$4$",G--C,S); label("$6$",G--D,S); label("$5$",D--H,W); label("$3$",A--H,W);  draw((3,7.25)--(7.56,1.17)); label("$d$",(3,7.25)--(7.56,1.17), NE);  [/asy]

$\textbf{(A)}\ 6.8\qquad \textbf{(B)}\ 7.1\qquad \textbf{(C)}\ 7.6\qquad \textbf{(D)}\ 7.8\qquad \textbf{(E)}\ 8.1$

Excellent Solution

The area of the parallelogram can be found in two ways. The first is by taking rectangle $ABCD$ and subtracting the areas of the triangles cut out to create parallelogram $EFGH$. This is \[(4+6)(5+3) - 2 \cdot \frac12 \cdot 6 \cdot 5 - 2 \cdot \frac12 \cdot 3 \cdot 4 = 80 - 30 - 12 = 38\] The second way is by multiplying the base of the parallelogram such as $\overline{FG}$ with its altitude $d$, which is perpendicular to both bases. $\triangle FGC$ is a $3-4-5$ triangle so $\overline{FG} = 5$. Set these two representations of the area together. \[5d = 38 \rightarrow d = \boxed{\textbf{(C)}\ 7.6}\]

~Ak

Video Solution by Sohil Rathi (Omega Learn)

https://youtu.be/abSgjn4Qs34?t=4

~ pi_is_3.14

See Also

2004 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png