Difference between revisions of "2001 AMC 10 Problems/Problem 21"
(Solution 4) |
Dreamer1297 (talk | contribs) (→Solution 4 (graphical)) |
||
Line 72: | Line 72: | ||
Now we create a second equation. We must choose some point <math>(x,y)</math> on the line <math>y=\frac{12}{5}x</math> such that <math>y=10-2x</math>, which implies that the cylinder’s diameter, <math>10-2x</math>, must be equal to its height, <math>y</math>. Solving yields <math>x=\frac{25}{11}</math>, and the radius is thus <math>\frac{10-2x}{2}=\frac{\frac{60}{11}}{2}=\boxed{\textbf{(B)}\ \frac{30}{11}}</math>. | Now we create a second equation. We must choose some point <math>(x,y)</math> on the line <math>y=\frac{12}{5}x</math> such that <math>y=10-2x</math>, which implies that the cylinder’s diameter, <math>10-2x</math>, must be equal to its height, <math>y</math>. Solving yields <math>x=\frac{25}{11}</math>, and the radius is thus <math>\frac{10-2x}{2}=\frac{\frac{60}{11}}{2}=\boxed{\textbf{(B)}\ \frac{30}{11}}</math>. | ||
+ | |||
+ | ==Solution 5 (Similar to Solution 2)== | ||
+ | |||
+ | Like in Solution 2, we draw a diagram. | ||
+ | |||
+ | <asy> | ||
+ | draw((5,0)--(-5,0)--(0,12)--cycle); | ||
+ | unitsize(.75cm); | ||
+ | draw((-30/11,0)--(-30/11,60/11)); | ||
+ | draw((-30/11,60/11)--(30/11,60/11)); | ||
+ | draw((30/11,60/11)--(30/11,0)); | ||
+ | draw((0,0)--(0,12)); | ||
+ | label("$2r$",(0,30/11),E); | ||
+ | label("$12-2r$",(0,80/11),E); | ||
+ | label("$2r$",(0,60/11),S); | ||
+ | label("$10$",(0,0),S); | ||
+ | label("$A$",(0,12),N); | ||
+ | label("$B$",(-5,0),SW); | ||
+ | label("$C$",(5,0),SE); | ||
+ | label("$D$",(-30/11,60/11),W); | ||
+ | label("$E$",(30/11,60/11),E); | ||
+ | </asy> | ||
==Trivia== | ==Trivia== |
Revision as of 21:28, 10 February 2024
Contents
[hide]Problem
A right circular cylinder with its diameter equal to its height is inscribed in a right circular cone. The cone has diameter and altitude , and the axes of the cylinder and cone coincide. Find the radius of the cylinder.
Solution 1 (video solution)
Solution 2
Let the diameter of the cylinder be . Examining the cross section of the cone and cylinder, we find two similar triangles. Hence, which we solve to find . Our answer is .
Solution 3 (Very similar to solution 2 but explained more)
We are asked to find the radius of the cylinder, or so we can look for similarity. We know that and , thus we have similarity between and by similarity.
Therefore, we can create an equation to find the length of the desired side. We know that:
Plugging in yields:
Cross multiplying and simplifying gives:
Since the problem asks us to find the radius of the cylinder, we are done and the radius of the cylinder is .
~etvat
Solution 4 (graphical)
Assume that a point on a given diameter of the cone is the point on a two-dimensional representation of the cone as shown in Solution 2. The top point of the cone is thus and the line that goes through both points is .
Now we create a second equation. We must choose some point on the line such that , which implies that the cylinder’s diameter, , must be equal to its height, . Solving yields , and the radius is thus .
Solution 5 (Similar to Solution 2)
Like in Solution 2, we draw a diagram.
Trivia
This problem appeared in AoPS's Introduction to Geometry as a challenge problem.
See Also
2001 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.