Difference between revisions of "2024 AIME II Problems/Problem 12"

(grammar)
(add a solution)
Line 115: Line 115:
 
& = \frac{7}{16} .
 
& = \frac{7}{16} .
 
\end{align*}
 
\end{align*}
 
  
 
Therefore, the answer is <math>7 + 16 = \boxed{\textbf{(23) }}</math>.
 
Therefore, the answer is <math>7 + 16 = \boxed{\textbf{(23) }}</math>.
  
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 +
 +
== Solution 4 (coordinate bash) ==
 +
 +
Let <math>s</math> be a segment in <math>\mathcal{F}</math> with x-intercept <math>a</math> and y-intercept <math>b</math>. We can write <math>s</math> as
 +
\begin{align*}
 +
\frac{x}{a} + \frac{y}{b} &= 1 \
 +
y &= b(1 - \frac{x}{a}).
 +
\end{align*}
 +
Let the unique point in the first quadrant <math>(x, y)</math> lie on <math>s</math> and no other segment in <math>\mathcal{F}</math>. We can find <math>x</math> by solving
 +
<cmath>
 +
b(1 - \frac{x}{a}) = (b + db)(1 - \frac{x}{a + da})
 +
</cmath>
 +
and taking the limit as <math>da, db \to 0</math>. Since <math>s</math> has length <math>1</math>, <math>a^2 + b^2 = 1^2</math> by the Pythagorean theorem. Solving this for <math>db</math>, we get
 +
\begin{align*}
 +
a^2 + b^2 &= 1 \
 +
b^2 &= 1 - a^2 \
 +
\frac{db^2}{da} &= \frac{d(1 - a^2)}{da} \
 +
2a\frac{db}{da} &= -2a \
 +
db &= -\frac{a}{b}da.
 +
\end{align*}
 +
After we substitute <math>db = -\frac{a}{b}da</math>, the equation for <math>x</math> becomes
 +
<cmath>
 +
b(1 - \frac{x}{a}) = (b -\frac{a}{b} da)(1 - \frac{x}{a + da}).
 +
</cmath>
 +
 +
In <math>\overline{AB}</math>, <math>a = \frac{1}{2}</math> and <math>b = \frac{\sqrt{3}}{2}</math>. To find the x-coordinate of <math>C</math>, we substitute these into the equation for <math>x</math> and get
 +
\begin{align*}
 +
\frac{\sqrt{3}}{2}(1 - \frac{x}{\frac{1}{2}}) &= (\frac{\sqrt{3}}{2} - \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} da)(1 - \frac{x}{\frac{1}{2} + da}) \
 +
\frac{\sqrt{3}}{2}(1 - 2x) &= (\frac{\sqrt{3}}{2} - \frac{da}{\sqrt{3}})(1 - \frac{x}{\frac{1 + 2da}{2}}) \
 +
\frac{\sqrt{3}}{2} - \sqrt{3}x &= \frac{3 - 2da}{2\sqrt{3}}(1 - \frac{2x}{1 + 2da}) \
 +
\frac{\sqrt{3}}{2} - \sqrt{3}x &= \frac{3 - 2da}{2\sqrt{3}} \cdot \frac{1 + 2da - 2x}{1 + 2da} \
 +
\frac{\sqrt{3}}{2} - \sqrt{3}x &= \frac{3 + 6da - 6x - 2da - 4da^2 + 4xda}{2\sqrt{3} + 4\sqrt{3}da} \
 +
(\frac{\sqrt{3}}{2} - \sqrt{3}x)(2\sqrt{3} + 4\sqrt{3}da) &= 3 + 6da - 6x - 2da - 4da^2 + 4xda \
 +
3 + 6da - 6x - 12xda &= 3 + 4da - 6x - 4da^2 + 4xda \
 +
2da &= -4da^2 + 16xda \
 +
16xda &= 2da + 4da^2 \
 +
x &= \frac{da + 2da^2}{8da}.
 +
\end{align*}
 +
We take the limit as <math>da \to 0</math> to get
 +
<cmath>
 +
x = \lim_{da \to 0} \frac{da + 2da^2}{8da} = \lim_{da \to 0} \frac{1 + 2da}{8} = \frac{1}{8}.
 +
</cmath>
 +
We substitute <math>x = \frac{1}{8}</math> into the equation for <math>\overline{AB}</math> to find the y-coordinate <math>y</math> of <math>C</math>:
 +
<cmath>
 +
y = b(1 - \frac{x}{a}) = \frac{\sqrt{3}}{2}(1 - \frac{\frac{1}{8}}{\frac{1}{2}}) = \frac{3\sqrt{3}}{8}.
 +
</cmath>
 +
The problem asks for
 +
<cmath>
 +
OC^2 = (\frac{1}{8})^2 + (\frac{3\sqrt{3}}{8})^2 = \frac{7}{16} = \frac{p}{q},
 +
</cmath>
 +
so <math>p + q = 7 + 16 = \boxed{023}</math>.
  
 
==Video Solution==
 
==Video Solution==

Revision as of 04:22, 12 February 2024

Problem

Let O=(0,0), A=(12,0), and B=(0,32) be points in the coordinate plane. Let F be the family of segments PQ of unit length lying in the first quadrant with P on the x-axis and Q on the y-axis. There is a unique point C on AB, distinct from A and B, that does not belong to any segment from F other than AB. Then OC2=pq, where p and q are relatively prime positive integers. Find p+q.

Solution 1

By Furaken [asy] pair O=(0,0); pair X=(1,0); pair Y=(0,1); pair A=(0.5,0); pair B=(0,sin(pi/3)); dot(O); dot(X); dot(Y); dot(A); dot(B); draw(X--O--Y); draw(A--B); label("$B'$", B, W); label("$A'$", A, S); label("$O$", O, SW); pair C=(1/8,3*sqrt(3)/8); dot(C); pair D=(1/8,0); dot(D); pair E=(0,3*sqrt(3)/8); dot(E); label("$C$", C, NE); label("$D$", D, S); label("$E$", E, W); draw(D--C--E); [/asy]

Let $C = (\tfrac18,\tfrac{3\sqrt3}8)$. This is sus, furaken randomly guessed C and proceeded to prove it works Draw a line through $C$ intersecting the $x$-axis at $A'$ and the $y$-axis at $B'$. We shall show that $A'B' \ge 1$, and that equality only holds when $A'=A$ and $B'=B$.

Let $\theta = \angle OA'C$. Draw $CD$ perpendicular to the $x$-axis and $CE$ perpendicular to the $y$-axis as shown in the diagram. Then \[8A'B' = 8CA' + 8CB' = \frac{3\sqrt3}{\sin\theta} + \frac{1}{\cos\theta}\] By some inequality (I forgot its name), \[\left(\frac{3\sqrt3}{\sin\theta} + \frac{1}{\cos\theta}\right) \cdot \left(\frac{3\sqrt3}{\sin\theta} + \frac{1}{\cos\theta}\right) \cdot (\sin^2\theta + \cos^2\theta) \ge (3+1)^3 = 64\] We know that $\sin^2\theta + \cos^2\theta = 1$. Thus $\tfrac{3\sqrt3}{\sin\theta} + \tfrac{1}{\cos\theta} \ge 8$. Equality holds if and only if \[\frac{3\sqrt3}{\sin\theta} : \frac{1}{\cos\theta} = \frac{3\sqrt3}{\sin\theta} : \frac{1}{\cos\theta} = \sin^2\theta : \cos^2\theta\] which occurs when $\theta=\tfrac\pi3$. Guess what, $\angle OAB$ happens to be $\tfrac\pi3$, thus $A'=A$ and $B'=B$. Thus, $AB$ is the only segment in $\mathcal{F}$ that passes through $C$. Finally, we calculate $OC^2 = \tfrac1{64} + \tfrac{27}{64} = \tfrac7{16}$, and the answer is $\boxed{023}$. ~Furaken

Solution 2

$y=-(\tan \theta) x+\sin \theta=-\sqrt{3}x+\frac{\sqrt{3}}{2}, x=\frac{\sqrt{3}-2\sin \theta}{2\sqrt{3}-2\tan \theta}$

Now, we want to find $\lim_{\theta\to\frac{\pi}{3}}\frac{\sqrt{3}-2\sin \theta}{2\sqrt{3}-2\tan \theta}$. By L'Hôpital's rule, we get $\lim_{\theta\to\frac{\pi}{3}}\frac{\sqrt{3}-2\sin \theta}{2\sqrt{3}-2\tan \theta}=\lim_{\theta\to\frac{\pi}{3}}cos^3{x}=\frac{1}{8}$. This means that $y=\frac{3\sqrt{3}}{8}\implies OC^2=\frac{7}{16}$, so we get $\boxed{023}$.

~Bluesoul

Solution 3

The equation of line $AB$ is \[ y = \frac{\sqrt{3}}{2} x - \sqrt{3} x.  \hspace{1cm} (2) \]

The position of line $PQ$ can be characterized by $\angle QPO$, denoted as $\theta$. Thus, the equation of line $PQ$ is

\[ y = \sin \theta - \tan \theta \cdot x . \hspace{1cm} (2) \]

Solving (1) and (2), the $x$-coordinate of the intersecting point of lines $AB$ and $PQ$ satisfies the following equation:

\[ \frac{\frac{\sqrt{3}}{2} - \sqrt{3} x}{\sin \theta} + \frac{x}{\cos \theta} = 1 . \hspace{1cm} (1) \]

We denote the L.H.S. as $f \left( \theta; x \right)$.

We observe that $f \left( 60^\circ ; x \right) = 1$ for all $x$. Therefore, the point $C$ that this problem asks us to find can be equivalently stated in the following way:

We interpret Equation (1) as a parameterized equation that $x$ is a tuning parameter and $\theta$ is a variable that shall be solved and expressed in terms of $x$. In Equation (1), there exists a unique $x \in \left( 0, 1 \right)$, denoted as $x_C$ ($x$-coordinate of point $C$), such that the only solution is $\theta = 60^\circ$. For all other $x \in \left( 0, 1 \right) \backslash \{ x_C \}$, there are more than one solutions with one solution $\theta = 60^\circ$ and at least another solution.

Given that function $f \left( \theta ; x \right)$ is differentiable, the above condition is equivalent to the first-order-condition \[ \frac{\partial f \left( \theta ; x_C \right) }{\partial \theta} \bigg|_{\theta = 60^\circ} = 0 . \]

Calculating derivatives in this equation, we get \[ - \left( \frac{\sqrt{3}}{2} - \sqrt{3} x_C \right) \frac{\cos 60^\circ}{\sin^2 60^\circ} + x_C \frac{\sin 60^\circ}{\cos^2 60^\circ} = 0. \]

By solving this equation, we get \[ x_C = \frac{1}{8} . \]

Plugging this into Equation (1), we get the $y$-coordinate of point $C$: \[ y_C = \frac{3 \sqrt{3}}{8} . \]

Therefore, OC2=xC2+yC2=716.

Therefore, the answer is $7 + 16 = \boxed{\textbf{(23) }}$.

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Solution 4 (coordinate bash)

Let $s$ be a segment in $\mathcal{F}$ with x-intercept $a$ and y-intercept $b$. We can write $s$ as xa+yb=1y=b(1xa). Let the unique point in the first quadrant $(x, y)$ lie on $s$ and no other segment in $\mathcal{F}$. We can find $x$ by solving \[b(1 - \frac{x}{a}) = (b + db)(1 - \frac{x}{a + da})\] and taking the limit as $da, db \to 0$. Since $s$ has length $1$, $a^2 + b^2 = 1^2$ by the Pythagorean theorem. Solving this for $db$, we get a2+b2=1b2=1a2db2da=d(1a2)da2adbda=2adb=abda. After we substitute $db = -\frac{a}{b}da$, the equation for $x$ becomes \[b(1 - \frac{x}{a}) = (b -\frac{a}{b} da)(1 - \frac{x}{a + da}).\]

In $\overline{AB}$, $a = \frac{1}{2}$ and $b = \frac{\sqrt{3}}{2}$. To find the x-coordinate of $C$, we substitute these into the equation for $x$ and get 32(1x12)=(321232da)(1x12+da)32(12x)=(32da3)(1x1+2da2)323x=32da23(12x1+2da)323x=32da231+2da2x1+2da323x=3+6da6x2da4da2+4xda23+43da(323x)(23+43da)=3+6da6x2da4da2+4xda3+6da6x12xda=3+4da6x4da2+4xda2da=4da2+16xda16xda=2da+4da2x=da+2da28da. We take the limit as $da \to 0$ to get \[x = \lim_{da \to 0} \frac{da + 2da^2}{8da} = \lim_{da \to 0} \frac{1 + 2da}{8} = \frac{1}{8}.\] We substitute $x = \frac{1}{8}$ into the equation for $\overline{AB}$ to find the y-coordinate $y$ of $C$: \[y = b(1 - \frac{x}{a}) = \frac{\sqrt{3}}{2}(1 - \frac{\frac{1}{8}}{\frac{1}{2}}) = \frac{3\sqrt{3}}{8}.\] The problem asks for \[OC^2 = (\frac{1}{8})^2 + (\frac{3\sqrt{3}}{8})^2 = \frac{7}{16} = \frac{p}{q},\] so $p + q = 7 + 16 = \boxed{023}$.

Video Solution

https://youtu.be/QwLBBzHFPNE

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Query

[asy] pair O=(0,0); pair X=(1,0); pair Y=(0,1); pair A=(0.5,0); pair B=(0,sin(pi/3)); dot(O); dot(X); dot(Y); dot(A); dot(B); draw(X--O--Y); draw(A--B); label("$B$", B, W); pair P=(0.5, sin(pi/3)); dot(P); draw(A--P--B); label("$A$", A, S); label("$O$", O, SW); pair C=(1/8,3*sqrt(3)/8); dot(C); label("$C$", C, SW); draw(C--P); label("$P$", P, NE); [/asy] Let $C$ be a fixed point in the first quadrant. Let $A$ be a point on the positive $x$-axis and $B$ be a point on the positive $y$-axis such that $AB$ passes through $C$ and the length of $AB$ is minimal. Let $P$ be the point such that $OAPB$ is a rectangle. Prove that $PC \perp AB$. (One can solve this through algebra/calculus bash, but I'm trying to find a solution that mainly uses geometry. If you know such a solution, write it here on this wiki page.) ~Furaken

See also

2024 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png