Difference between revisions of "2000 AIME I Problems/Problem 10"

(clean)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
A sequence of numbers <math>x_{1},x_{2},x_{3},\ldots,x_{100}</math> has the property that, for every integer <math>k</math> between <math>1</math> and <math>100,</math> inclusive, the number <math>x_{k}</math> is <math>k</math> less than the sum of the other <math>99</math> numbers. Given that <math>x_{50} = m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m + n</math>.
+
A [[sequence]] of numbers <math>x_{1},x_{2},x_{3},\ldots,x_{100}</math> has the property that, for every [[integer]] <math>k</math> between <math>1</math> and <math>100,</math> inclusive, the number <math>x_{k}</math> is <math>k</math> less than the sum of the other <math>99</math> numbers. Given that <math>x_{50} = m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m + n</math>.
  
 
== Solution ==
 
== Solution ==
Let the sum of all of the terms in the sequence be <math>\mathbb{S}</math>.
+
Let the sum of all of the terms in the sequence be <math>\mathbb{S}</math>. Then for each integer <math>k</math>, <math>x_k = \mathbb{S}-x_k-k \Longrightarrow \mathbb{S} - 2x_k = k</math>. Summing this up for all <math>k</math> from <math>1, 2, \ldots, 100</math>,
  
<math>x_1=\mathbb{S}-x_1-1</math>
+
<cmath>\begin{align*}100\mathbb{S}-2(x_1 + x_2 + \cdots + x_{100}) &= 1 + 2 + \cdots + 100\
 +
100\mathbb{S} - 2\mathbb{S} &= \frac{100 \cdot 101}{2} = 5050\
 +
\mathbb{S}&=\frac{2525}{49}\end{align*}</cmath>
  
<math>x_2=\mathbb{S}-x_2-2</math>
+
Now, substituting for <math>x_{50}</math>, we get <math>2x_{50}=\frac{2525}{49}-50=\frac{75}{49} \Longrightarrow x_{50}=\frac{75}{98}</math>, and the answer is <math>75+98=\boxed{173}</math>.
 
 
<math>\vdots</math>
 
 
 
<math>x_{100}=\mathbb{S}-x_{100}-100</math>
 
 
 
<math>2x_n=\mathbb{S} - n</math>
 
 
 
<math>2\mathbb{S}=100\mathbb{S}-5050</math>
 
 
 
<math>98\mathbb{S}=5050</math>
 
 
 
<math>\mathbb{S}=\frac{2525}{49}</math>
 
 
 
<math>2x_{50}=\frac{2525}{49}-50=\frac{75}{49}</math>
 
 
 
<math>x_{50}=\frac{75}{98}</math>
 
 
 
<math>75+98=\boxed{173}</math>
 
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2000|n=I|num-b=9|num-a=11}}
 
{{AIME box|year=2000|n=I|num-b=9|num-a=11}}
 +
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 10:46, 1 January 2008

Problem

A sequence of numbers $x_{1},x_{2},x_{3},\ldots,x_{100}$ has the property that, for every integer $k$ between $1$ and $100,$ inclusive, the number $x_{k}$ is $k$ less than the sum of the other $99$ numbers. Given that $x_{50} = m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m + n$.

Solution

Let the sum of all of the terms in the sequence be $\mathbb{S}$. Then for each integer $k$, $x_k = \mathbb{S}-x_k-k \Longrightarrow \mathbb{S} - 2x_k = k$. Summing this up for all $k$ from $1, 2, \ldots, 100$,

\begin{align*}100\mathbb{S}-2(x_1 + x_2 + \cdots + x_{100}) &= 1 + 2 + \cdots + 100\\ 100\mathbb{S} - 2\mathbb{S} &= \frac{100 \cdot 101}{2} = 5050\\ \mathbb{S}&=\frac{2525}{49}\end{align*}

Now, substituting for $x_{50}$, we get $2x_{50}=\frac{2525}{49}-50=\frac{75}{49} \Longrightarrow x_{50}=\frac{75}{98}$, and the answer is $75+98=\boxed{173}$.

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions