Difference between revisions of "2016 IMO Problems/Problem 1"
m (→Solution 2) |
m (→Solution 2) |
||
Line 20: | Line 20: | ||
Let <math>\angle FBA = \angle FAB = \angle FAD = \angle FCD = \alpha</math>. And WLOG, <math>MF = 1</math>. Hence, <math>CF = 2</math>, | Let <math>\angle FBA = \angle FAB = \angle FAD = \angle FCD = \alpha</math>. And WLOG, <math>MF = 1</math>. Hence, <math>CF = 2</math>, | ||
− | <math>\implies</math> <math>BF = 2.cos(2\alpha) = FA</math>, | + | <math>\implies</math> <math>BF = CF.cos(2\alpha) = 2.cos(2\alpha) = FA</math>, |
− | <math>\implies</math> <math>DA = \frac{AC}{2cos(\alpha)} = \frac{1+cos(2\alpha)}{cos(\alpha)}</math> and | + | <math>\implies</math> <math>DA = \frac{AC}{2cos(\alpha)} = \frac{CF+FA}{2cos(\alpha)} = \frac{2+2cos(2\alpha)}{2cos(\alpha)} = \frac{1+cos(2\alpha)}{cos(\alpha)}</math> and |
<math>\implies</math> <math>DE = AE = \frac{DA}{2cos(\alpha)} = \frac{1+cos(2\alpha)}{2.(cos(\alpha))^2} = 1</math>. | <math>\implies</math> <math>DE = AE = \frac{DA}{2cos(\alpha)} = \frac{1+cos(2\alpha)}{2.(cos(\alpha))^2} = 1</math>. | ||
Line 30: | Line 30: | ||
<math>\angle MBF = \angle MFB = 2\alpha</math> and <math>\angle MXD = \angle MDX = 2\alpha</math> and we have seen that <math>MB = MF = MD = MX</math>, so <math>BFDX</math> is isosceles trapezoid. And we know that <math>ME</math> bisects <math>\angle FMD</math>, so <math>ME</math> is the symmetrical axis of <math>BFDX</math>. | <math>\angle MBF = \angle MFB = 2\alpha</math> and <math>\angle MXD = \angle MDX = 2\alpha</math> and we have seen that <math>MB = MF = MD = MX</math>, so <math>BFDX</math> is isosceles trapezoid. And we know that <math>ME</math> bisects <math>\angle FMD</math>, so <math>ME</math> is the symmetrical axis of <math>BFDX</math>. | ||
− | + | <math>B</math> and <math>X</math>, <math>D</math> and <math>E</math> are symmetrical respect to <math>ME</math>. Hence, the symmetry of <math>BD</math> with respect to <math>ME</math> is <math>FX</math>. And we are done <math>\blacksquare</math>. | |
~EgeSaribas | ~EgeSaribas |
Revision as of 11:16, 19 May 2024
Contents
[hide]Problem
Triangle has a right angle at . Let be the point on line such that and lies between and . Point is chosen so that and is the bisector of . Point is chosen so that and is the bisector of . Let be the midpoint of . Let be the point such that is a parallelogram. Prove that and are concurrent.
Solution
The Problem shows that
And
Finally
~Athmyx
Solution 2
Let . And WLOG, . Hence, ,
,
and
.
So which means , , and are concyclic. We know that and , so we conclude is parallelogram. So . That means is isosceles trapezoid. Hence, . By basic angle chasing,
and and we have seen that , so is isosceles trapezoid. And we know that bisects , so is the symmetrical axis of .
and , and are symmetrical respect to . Hence, the symmetry of with respect to is . And we are done .
~EgeSaribas
See Also
2016 IMO (Problems) • Resources | ||
Preceded by First Problem |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 2 |
All IMO Problems and Solutions |