Difference between revisions of "2011 AIME I Problems/Problem 4"

(Solution)
(soln 5)
 
(43 intermediate revisions by 22 users not shown)
Line 1: Line 1:
== Problem 4 ==
+
== Problem ==
 
In triangle <math>ABC</math>, <math>AB=125</math>, <math>AC=117</math> and <math>BC=120</math>. The angle bisector of angle <math>A</math> intersects <math> \overline{BC} </math> at point <math>L</math>, and the angle bisector of angle <math>B</math> intersects <math> \overline{AC} </math> at point <math>K</math>. Let <math>M</math> and <math>N</math> be the feet of the perpendiculars from <math>C</math> to <math> \overline{BK}</math> and <math> \overline{AL}</math>, respectively. Find <math>MN</math>.
 
In triangle <math>ABC</math>, <math>AB=125</math>, <math>AC=117</math> and <math>BC=120</math>. The angle bisector of angle <math>A</math> intersects <math> \overline{BC} </math> at point <math>L</math>, and the angle bisector of angle <math>B</math> intersects <math> \overline{AC} </math> at point <math>K</math>. Let <math>M</math> and <math>N</math> be the feet of the perpendiculars from <math>C</math> to <math> \overline{BK}</math> and <math> \overline{AL}</math>, respectively. Find <math>MN</math>.
  
 +
== Solution 1 ==
 +
Extend <math>{CM}</math> and <math>{CN}</math> such that they intersect line <math>{AB}</math> at points <math>P</math> and <math>Q</math>, respectively.
 +
<asy>
 +
defaultpen(fontsize(10)+0.8); size(200);
 +
pen p=fontsize(9)+linewidth(3);
 +
pair A,B,C,D,K,L,M,N,P,Q;
 +
A=origin; B=(125,0); C=IP(CR(A,117),CR(B,120)); L=extension(B,C,A,bisectorpoint(B,A,C)); K=extension(A,C,B,bisectorpoint(C,B,A)); M=foot(C,B,K); N=foot(C,A,L);
 +
draw(A--B--C--A); draw(A--L^^B--K, gray+dashed+0.5); draw(M--C--N^^N--extension(A,B,C,N)^^M--extension(A,B,C,M), gray+0.5);
 +
dot("$A$",A,dir(200),p); dot("$B$",B,right,p); dot("$C$",C,up,p); dot("$L$",L,2*dir(70),p); dot("$N$",N,2*dir(-90),p); dot("$M$",M,2*dir(-90),p); dot("$P$",extension(A,B,C,M),2*down,p); dot("$Q$",extension(A,B,C,N),2*down,p);
 +
label("$125$",A--B,down,fontsize(10)); label("$117$",A--C,2*dir(130),fontsize(10)); label("$120$",B--C,1.5*dir(30),fontsize(10));
 +
</asy>
 +
Since <math>{BM}</math> is the angle bisector of angle <math>B</math> and <math>{CM}</math> is perpendicular to <math>{BM}</math>, <math>\triangle BCP</math> must be an isoceles triangle, so <math>BP=BC=120</math>, and <math>M</math> is the midpoint of <math>{CP}</math>. For the same reason, <math>AQ=AC=117</math>, and <math>N</math> is the midpoint of <math>{CQ}</math>.
 +
Hence <math>MN=\tfrac 12 PQ</math>. Since <cmath>PQ=BP+AQ-AB=120+117-125=112,</cmath> so <math>MN=\boxed{056}</math>.
 +
 +
== Solution 2 ==
 +
Let <math>I</math> be the incenter of <math>ABC</math>. Since <math>I</math> lies on <math>BM</math> and <math>AN</math>, <math>IM \perp MC</math> and <math>IN \perp NC</math>, so <math>\angle IMC + \angle INC = 180^\circ</math>. This means that <math>CMIN</math> is a cyclic quadrilateral. By the Law of Sines, <math>\frac{MN}{\sin \angle MIN} = \frac{2R}{\sin \angle CMI} = 2R = CI</math>, where <math>R</math> is the radius of the circumcircle of <math>CMIN</math>. Since <math>\sin \angle MIN = \sin \angle BIA = \sin (90^\circ + \tfrac 12 \angle BCA) = \cos \tfrac 12 \angle BCA = \cos \angle BCI</math>, we have that <math>MN = CI \cdot \sin \angle MIN = CI \cdot \cos \angle BCI</math>. Letting <math>H</math> be the point of contact of the incircle of <math>ABC</math> with side <math>BC</math>, we have <math>MN = CI \cdot \cos \angle BCI = CI \cdot \frac{CH}{CI} = CH</math>. Thus, <math>MN = s - AB = \frac{117+120-125}{2}=\boxed{056}</math>.
 +
 +
== Solution 3 (Bash) ==
 +
Project <math>I</math> onto <math>AC</math> and <math>BC</math> as <math>D</math> and <math>E</math>. <math>ID</math> and <math>IE</math> are both in-radii of <math>\triangle ABC</math> so we get right triangles with legs <math>r</math> (the in-radius length) and <math>s - c = 56</math>. Since <math>IC</math> is the hypotenuse for the 4 triangles (<math>\triangle INC, \triangle IMC, \triangle IDC,</math> and <math>\triangle IEC</math>), <math>C, D, M, I, N, E</math> are con-cyclic on a circle we shall denote as <math>\omega</math> which is also the circumcircle of <math>\triangle CMN</math> and <math>\triangle CDE</math>. To find <math>MN</math>, we can use the Law of Cosines on <math>\angle MON \implies MN^2 = 2R^2(1 - \cos{2\angle MCN})</math> where <math>O</math> is the center of <math>\omega</math>. Now, the circumradius <math>R</math> can be found with Pythagorean Theorem with <math>\triangle CDI</math> or <math>\triangle CEI</math>: <math>r^2 + 56^2 = (2R)^2</math>. To find <math>r</math>, we can use the formula <math>rs = [ABC]</math> and by Heron's, <math>[ABC] = \sqrt{181 \cdot 61 \cdot 56 \cdot 64} \implies r = \sqrt{\frac{61 \cdot 56 \cdot 64}{181}} \implies 2R^2 = \frac{393120}{181}</math>. To find <math>\angle MCN</math>, we can find <math>\angle MIN</math> since <math>\angle MCN = 180 - \angle MIN</math>. <math>\angle MIN = \angle MIC + \angle NIC = 180 - \angle BIC + 180 - \angle AIC = 180 - (180 - \frac{\angle A + \angle C}{2}) + 180 - (180 - \frac{\angle B + \angle C}{2}) = \frac{\angle A + \angle B + \angle C}{2} + \frac{\angle C}{2}</math>. Thus, <math>\angle MCN = 180 - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2}</math> and since <math>\angle A + \angle B + \angle C = 180</math>, we have <math>\angle A + \angle B + \angle C - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2} = \frac{\angle A + \angle B}{2}</math>. Plugging this into our Law of Cosines (LoC) formula gives <math>MN^2 = 2R^2(1 - \cos{\angle A + \angle B}) = 2R^2(1 + \cos{\angle C})</math>. To find <math>\cos{\angle C}</math>, we use LoC on <math>\triangle ABC \implies \cos{\angle C} = \frac{120^2 + 117^2 - 125^2}{2 \cdot 117 \cdot 120} = \frac{41 \cdot 19}{117 \cdot 15}</math>. Our formula now becomes <math>MN^2 = \frac{393120}{181} + \frac{2534}{15 \cdot 117}</math>. After simplifying, we get <math>MN^2 = 3136 \implies MN = \boxed{056}</math>.
 +
 +
--lucasxia01
 +
 +
== Solution 4==
 +
 +
Because <math>\angle CMI = \angle CNI = 90</math>, <math>CMIN</math> is cyclic.
 +
 +
Applying Ptolemy's theorem on CMIN:
 +
 +
<math>CN \cdot MI+CM \cdot IN=CI \cdot MN</math>
 +
 +
<math>CI^2(\cos \angle ICN \sin \angle ICM + \cos \angle ICM \sin \angle ICN) = CI \cdot MN</math>
 +
 +
<math>MN = CI \sin \angle MCN</math> by sine angle addition formula.
 +
 +
<math>\angle MCN = 180 - \angle MIN = 90 - \angle BCI</math>.
 +
 +
Let <math>H</math> be where the incircle touches <math>BC</math>, then <math>CI \cos \angle BCI = CH = \frac{a+b-c}{2}</math>.
 +
<math>a=120, b=117, c=125</math>, for a final answer of <math>\boxed{056}</math>.
 +
 +
Note: This is similar to Solution 2 after the first four lines
 +
 +
==Solution 5 (Trig Bash)==
 +
Applying [[Ptolemy's Theorem]] on the cyclic quadrilateral <math>MINC</math>, we find that
 +
 +
<math>MI\cdot CN + IN\cdot MC = MN\cdot IC</math>.
 +
 +
<math>\angle CIN=\frac{\alpha+\gamma}{2}</math> and <math>\angle MIC=\frac{\beta+\gamma}{2}</math> by the Exterior Angle Theorem, so from properties of sine and cosine, we can find that
 +
 +
<math>MI=IC\cdot\cos\left(\frac{\beta+\gamma}{2}\right),</math> <math>MC=IC\cdot\sin\left(\frac{\beta+\gamma}{2}\right),</math> <math>IN=IC\cdot\cos\left(\frac{\alpha+\gamma}{2}\right),</math> <math>CN=IC\cdot\sin\left(\frac{\alpha+\gamma}{2}\right).</math>
 +
 +
Plugging in the values and simplifying results in <math>MN = IC\cdot\sin\left(\frac{\alpha+\beta+2\gamma}{2}\right)</math> by the angle-addition identity <math>\sin(A+B)=\sin(A)\cos(B)+\sin(B)\cos(A)</math>.
 +
 +
Before we continue, we would like to simplify the value in the sine function. We see that <math>\frac{\alpha+\beta+2\gamma}{2}=\frac{\gamma}{2}+\frac{\alpha+\beta+\gamma}{2}=\frac{\gamma}{2}+90</math>. Using the fact that <math>\cos(A)=\sin(90-A)</math> results in
 +
 +
<math>\sin\left(\frac{\alpha+\beta+2\gamma}{2}\right)=\sin\left(90+\frac{\gamma}{2}\right)=\sin\left(90-(-\frac{\gamma}{2})\right)=\cos\left(-\frac{\gamma}{2}\right)=\cos\left(\frac{\gamma}{2}\right).</math>
  
== Solution ==
+
How do we simplify <math>IC</math>? Well, we can perform the [[Law of Sines]] on triangle <math>AIC</math>. This results in:
  
=== Solution 1 ===
+
<math>\frac{AC}{\sin(\angle AIC)}=\frac{IC}{\sin\left(\frac{\alpha}{2}\right)}</math>
Extend <math>{MN}</math> such that it intersects lines <math>{AC}</math> and <math>{BC}</math> at points <math>O</math> and <math>Q</math>, respectively.
 
  
 +
The value of <math>\angle AIC</math> is <math>\frac{\alpha+2\beta+\gamma}{2}</math> by the Exterior Angle Theorem on <math>\triangle ABI</math>, so the value of <math>\sin(\angle AIC)</math> is equivalent to the value of <math>\cos\left(\frac{\beta}{2}\right)</math> by a similar argument as above. Then rearranging yields <math>IC = b\cdot\frac{\sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\beta}{2}\right)}</math>.
  
'''Lemma 1: <math>O, Q</math> are midpoints of <math>AC</math> and <math>BC</math>'''
+
Going back to the previous formula <math>MN = IC\cdot\sin\left(\frac{\alpha+\beta+2\gamma}{2}\right)</math> and substituting values yields:
  
'''Proof:''' Consider the reflection of the vertex <math>C</math> over the line <math>BM</math>, and let this point be <math>C_1</math>. Since <math>\angle{BMC} = 90^{\circ}</math>, we have that <math>C_1</math> is the image of <math>C</math> after reflection over <math>M</math>, and from the definition of reflection <math>\angle{MBC} = \angle{MBC_1}</math>. Then it is easily seen that since <math>BM</math> is an angle bisector, that <math>\angle{MBC_1} = \angle{MBA}</math>, so <math>C_1</math> lies on <math>AB</math>. Similarly, if we define <math>C_2</math> to be the reflection of <math>C</math> over <math>N</math>, then we find that <math>C_2</math> lies on <math>AB</math>. Then we can now see that <math>\triangle{CMN} \sim \triangle{CC_1C_2}</math>, with a homothety of ratio <math>2</math> taking the first triangle to the second. Then this same homothety takes everything on the line <math>MN</math> to everything on the line <math>AB</math>. So since <math>O, Q</math> lie on <math>MN</math>, this homothety also takes <math>O, Q</math> to <math>A, B</math> so they are midpoints, as desired. <math>\Box</math>
+
<math>MN = b\cdot\frac{\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\gamma}{2}\right)}{\cos\left(\frac{\beta}{2}\right)}</math>.
  
'''Lemma 2: <math>\triangle{MQC}, \triangle{NOC}</math> are isosceles triangles'''
+
Finally, using the formulae <math>\sin\left(\frac{\alpha}{2}\right)=\sqrt{\frac{(s-b)(s-c)}{bc}}</math> and <math>\cos\left(\frac{\alpha}{2}\right)=\sqrt{\frac{s(s-a)}{bc}}</math> (where <math>s</math> is half the perimeter of the triangle), we reach our final value:
  
'''Proof:''' To show that <math>\triangle{MQC}</math> is isosceles, note that <math>\triangle{MQC} \sim \triangle{C_1BC}</math>, with similarity ratio of <math>\frac{1}{2}</math>. So it suffices to show that triangle <math>\triangle{C_1BC}</math> is isosceles. But this follows quickly from Lemma 1, since <math>BM</math> is both an altitude and an angle bisector of <math>\angle{C_1BC}</math>. <math>\triangle{NOC}</math> is isosceles by the same reasoning. <math>\Box</math>
+
<math>MN = b\cdot\frac{\sqrt{\frac{(s-b)(s-c)}{bc}}\cdot\sqrt{\frac{s(s-c)}{ab}}}{\sqrt{\frac{s(s-b)}{ac}}}</math>
  
 +
<math>=\frac{\sqrt{s(s-b)(s-c)^2}}{\sqrt{s(s-b)}}</math>
  
 +
<math>=\sqrt{(s-c)^2}</math>
  
Since <math>{OQ}</math> is a midline, it then follows that <math>{OC} = 58.5</math> and <math>{QC} = 60</math>. Since <math>\triangle MQC</math> and <math>\triangle NOC</math> are both isosceles, we have that <math>ON = OC = 58.5</math> and <math>MQ = QC = 60</math>. Since <math>OQ</math> is a midline, <math>OQ = 62.5</math>. We want to find <math>MN</math>, which is just <math>ON + MQ - OQ</math>.
+
<math>=s-c</math>
  
Substituting the values of <math>ON, MQ, OQ</math>, we have that the answer is <math>58.5 + 60 - 62.5 = \boxed {56}</math>.
+
<math>=181-125</math>
  
=== Solution 2 ===
+
<math>=\boxed{056}.</math>
  
Let <math>I</math> be the intersection of <math>AL</math> and <math>BK</math>, or rather the incenter of triangle <math>ABC</math>. Noting that <math>\angle IMC</math> and <math>\angle CNI</math> are right, we conclude that <math>CNIM</math> is a cyclic quadrilateral, so by [[Ptolemy's Theorem]], <cmath>CI\cdot MN=IM\cdot CN+NI\cdot MC.</cmath>
+
==Video Solution==
Now let <math>IP</math> and <math>IQ</math> be inradii to <math>AC</math> and <math>BC</math> respectively in the following picture, which is not to scale.
+
https://www.youtube.com/watch?v=yIUBhWiJ4Dk
<center>
+
~Mathematical Dexterity
<asy>
 
size(200);
 
pair A=(0,0),C=(117,0), B=(100,85),I=incenter(A,B,C),K=extension(B,I,A,C),L=extension(A,I,B,C),M=foot(C,B,K),EN=foot(C,A,L);
 
D(MP("A",A)--MP("B",B,N)--MP("C",C)--cycle,black);
 
draw(B--M--C--EN--A);
 
draw(M--K^^EN--L);
 
MP("M",M,WNW);MP("N",EN,NNW);MP("L",L,ENE);MP("K",K,S);MP("I",I,NW);
 
markscalefactor=.75;
 
draw(rightanglemark(C,M,I)^^rightanglemark(I,EN,C));
 
pair FAC=foot(I,A,C);
 
pair FBC=foot(I,B,C);
 
MP("P",FAC,S);MP("Q",FBC,ESE);
 
draw(I--FAC^^I--FBC,dotted);
 
draw(C--I);
 
draw(rightanglemark(I,FAC,A));
 
dot(A);dot(B);dot(C);dot(M);dot(EN);dot(K);dot(L);dot(FAC);dot(FBC);dot(I);
 
</asy>
 
</center>
 
We know that <math>\frac{\angle A+\angle B+\angle C}{2}=90^\circ</math>. In triangle <math>CBM</math>, we have <cmath>90^\circ=\angle CBM+\angle BCI+\angle ICM=\frac{\angle B}{2}+\frac{\angle C}{2}+\angle ICM.</cmath> Therefore, <math>\angle ICM=\frac{\angle A}{2}</math>, and <math>\triangle CIM\sim\triangle AIP</math>.
 
Thus <math>IM=CI\cdot \frac{IP}{AI}</math>. Using a similar method, we can find that <math>NI=CI\cdot\frac{IQ}{BI}</math>. Therefore, our Ptolemy's expression simplifies to <cmath>MN=\frac{IP}{AI}\cdot CN+\frac{IQ}{BI}\cdot MC=r\left(\frac{CN}{AI}+\frac{MC}{BI}\right),</cmath>
 
where <math>r</math> is the inradius of triangle <math>ABC</math>. Thus, <math>r=[ABC]/181</math>. Also, right triangles <math>CNA</math> and <math>CBM</math> tell us that <math>CN=117\sin \frac{A}{2}</math> and <math>MC=120\sin\frac{B}{2}</math>. But then <math>[CLA]=\frac{117\cdot AL}{2}\sin\frac{A}{2}</math>, and this is equal to <math>\frac{117}{242}\cdot [ABC]</math> by the Angle Bisector Theorem.  Therefore, solving this for <math>\sin\frac{A}{2}</math> and substituting yields <math>CN=\frac{2\cdot 117\cdot [ABC]}{242\cdot AL}</math>. Similarly, <math>MC=\frac{2\cdot 120\cdot [ABC]}{245\cdot BK}</math>. We now replace these in our Ptolemy's expression to get
 
<cmath>MN=\frac{[ABC]}{181}\left(\frac{2\cdot 117\cdot [ABC]}{242\cdot AL\cdot AI}+\frac{2\cdot 120\cdot [ABC]}{245\cdot BK\cdot BI}\right)</cmath><cmath>=\frac{2[ABC]^2}{181}\left(\frac{117}{242\cdot AL\cdot AI}+\frac{120}{245\cdot BK\cdot BI}\right).</cmath>
 
  
 +
==Video Solution==
 +
https://www.youtube.com/watch?v=vkniYGN45F4
  
We can also use [[mass points]], assigning masses of <math>120</math>, <math>117</math>, and <math>125</math> to points <math>A</math>, <math>B</math>, and <math>C</math>, respectively. Then point <math>L</math> has a mass of <math>242</math> and point <math>K</math> has a mass of <math>245</math>, so <math>AI=\frac{242}{362}\cdot AL</math> and <math>BI=\frac{245}{362}\cdot BK</math>. This simplifies our expression further to
+
~Shreyas S
<cmath>MN=4[ABC]^2\left(\frac{117}{242^2\cdot AL^2}+\frac{120}{245^2\cdot BK^2}\right).</cmath>
 
  
Then using the angle bisector formula, we find that <math>AL^2=125\cdot 117\left(1-\frac{120^2}{242^2}\right)</math> and <math>BK^2=125\cdot 120\left(1-\frac{117^2}{245^2}\right)</math>. Also, Heron's Formula tells us that <cmath>[ABC]^2=181\cdot 61\cdot 56\cdot 64,</cmath>
+
Alternate Solution: https://www.youtube.com/watch?v=L2OzYI0OJsc&t=12s
so when we substitute this all in, we get <cmath>MN=4\cdot 181\cdot 61\cdot 56\cdot 64\cdot\left(\frac{1}{125(242^2-120^2)}+\frac{1}{125(245^2-117^2)}\right)</cmath><cmath>=\frac{4\cdot 181\cdot 61\cdot 56\cdot 64}{125}\cdot\left(\frac{1}{122\cdot362}+\frac{1}{128\cdot362}\right)</cmath><cmath>=\frac{2\cdot 61\cdot 56\cdot 64}{125}\cdot\left(\frac{250}{122\cdot 128}\right)=\boxed{56}.</cmath>
 
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2011|n=I|num-b=3|num-a=5}}
 
{{AIME box|year=2011|n=I|num-b=3|num-a=5}}
 +
 +
[[Category:Intermediate Geometry Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 11:08, 15 July 2024

Problem

In triangle $ABC$, $AB=125$, $AC=117$ and $BC=120$. The angle bisector of angle $A$ intersects $\overline{BC}$ at point $L$, and the angle bisector of angle $B$ intersects $\overline{AC}$ at point $K$. Let $M$ and $N$ be the feet of the perpendiculars from $C$ to $\overline{BK}$ and $\overline{AL}$, respectively. Find $MN$.

Solution 1

Extend ${CM}$ and ${CN}$ such that they intersect line ${AB}$ at points $P$ and $Q$, respectively. [asy] defaultpen(fontsize(10)+0.8); size(200); pen p=fontsize(9)+linewidth(3); pair A,B,C,D,K,L,M,N,P,Q; A=origin; B=(125,0); C=IP(CR(A,117),CR(B,120)); L=extension(B,C,A,bisectorpoint(B,A,C)); K=extension(A,C,B,bisectorpoint(C,B,A)); M=foot(C,B,K); N=foot(C,A,L); draw(A--B--C--A); draw(A--L^^B--K, gray+dashed+0.5); draw(M--C--N^^N--extension(A,B,C,N)^^M--extension(A,B,C,M), gray+0.5); dot("$A$",A,dir(200),p); dot("$B$",B,right,p); dot("$C$",C,up,p); dot("$L$",L,2*dir(70),p); dot("$N$",N,2*dir(-90),p); dot("$M$",M,2*dir(-90),p); dot("$P$",extension(A,B,C,M),2*down,p); dot("$Q$",extension(A,B,C,N),2*down,p); label("$125$",A--B,down,fontsize(10)); label("$117$",A--C,2*dir(130),fontsize(10)); label("$120$",B--C,1.5*dir(30),fontsize(10));  [/asy] Since ${BM}$ is the angle bisector of angle $B$ and ${CM}$ is perpendicular to ${BM}$, $\triangle BCP$ must be an isoceles triangle, so $BP=BC=120$, and $M$ is the midpoint of ${CP}$. For the same reason, $AQ=AC=117$, and $N$ is the midpoint of ${CQ}$. Hence $MN=\tfrac 12 PQ$. Since \[PQ=BP+AQ-AB=120+117-125=112,\] so $MN=\boxed{056}$.

Solution 2

Let $I$ be the incenter of $ABC$. Since $I$ lies on $BM$ and $AN$, $IM \perp MC$ and $IN \perp NC$, so $\angle IMC + \angle INC = 180^\circ$. This means that $CMIN$ is a cyclic quadrilateral. By the Law of Sines, $\frac{MN}{\sin \angle MIN} = \frac{2R}{\sin \angle CMI} = 2R = CI$, where $R$ is the radius of the circumcircle of $CMIN$. Since $\sin \angle MIN = \sin \angle BIA = \sin (90^\circ + \tfrac 12 \angle BCA) = \cos \tfrac 12 \angle BCA = \cos \angle BCI$, we have that $MN = CI \cdot \sin \angle MIN = CI \cdot \cos \angle BCI$. Letting $H$ be the point of contact of the incircle of $ABC$ with side $BC$, we have $MN = CI \cdot \cos \angle BCI = CI \cdot \frac{CH}{CI} = CH$. Thus, $MN = s - AB = \frac{117+120-125}{2}=\boxed{056}$.

Solution 3 (Bash)

Project $I$ onto $AC$ and $BC$ as $D$ and $E$. $ID$ and $IE$ are both in-radii of $\triangle ABC$ so we get right triangles with legs $r$ (the in-radius length) and $s - c = 56$. Since $IC$ is the hypotenuse for the 4 triangles ($\triangle INC, \triangle IMC, \triangle IDC,$ and $\triangle IEC$), $C, D, M, I, N, E$ are con-cyclic on a circle we shall denote as $\omega$ which is also the circumcircle of $\triangle CMN$ and $\triangle CDE$. To find $MN$, we can use the Law of Cosines on $\angle MON \implies MN^2 = 2R^2(1 - \cos{2\angle MCN})$ where $O$ is the center of $\omega$. Now, the circumradius $R$ can be found with Pythagorean Theorem with $\triangle CDI$ or $\triangle CEI$: $r^2 + 56^2 = (2R)^2$. To find $r$, we can use the formula $rs = [ABC]$ and by Heron's, $[ABC] = \sqrt{181 \cdot 61 \cdot 56 \cdot 64} \implies r = \sqrt{\frac{61 \cdot 56 \cdot 64}{181}} \implies 2R^2 = \frac{393120}{181}$. To find $\angle MCN$, we can find $\angle MIN$ since $\angle MCN = 180 - \angle MIN$. $\angle MIN = \angle MIC + \angle NIC = 180 - \angle BIC + 180 - \angle AIC = 180 - (180 - \frac{\angle A + \angle C}{2}) + 180 - (180 - \frac{\angle B + \angle C}{2}) = \frac{\angle A + \angle B + \angle C}{2} + \frac{\angle C}{2}$. Thus, $\angle MCN = 180 - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2}$ and since $\angle A + \angle B + \angle C = 180$, we have $\angle A + \angle B + \angle C - \frac{\angle A + \angle B + \angle C}{2} - \frac{\angle C}{2} = \frac{\angle A + \angle B}{2}$. Plugging this into our Law of Cosines (LoC) formula gives $MN^2 = 2R^2(1 - \cos{\angle A + \angle B}) = 2R^2(1 + \cos{\angle C})$. To find $\cos{\angle C}$, we use LoC on $\triangle ABC \implies \cos{\angle C} = \frac{120^2 + 117^2 - 125^2}{2 \cdot 117 \cdot 120} = \frac{41 \cdot 19}{117 \cdot 15}$. Our formula now becomes $MN^2 = \frac{393120}{181} + \frac{2534}{15 \cdot 117}$. After simplifying, we get $MN^2 = 3136 \implies MN = \boxed{056}$.

--lucasxia01

Solution 4

Because $\angle CMI = \angle CNI = 90$, $CMIN$ is cyclic.

Applying Ptolemy's theorem on CMIN:

$CN \cdot MI+CM \cdot IN=CI \cdot MN$

$CI^2(\cos \angle ICN \sin \angle ICM + \cos \angle ICM \sin \angle ICN) = CI \cdot MN$

$MN = CI \sin \angle MCN$ by sine angle addition formula.

$\angle MCN = 180 - \angle MIN = 90 - \angle BCI$.

Let $H$ be where the incircle touches $BC$, then $CI \cos \angle BCI = CH = \frac{a+b-c}{2}$. $a=120, b=117, c=125$, for a final answer of $\boxed{056}$.

Note: This is similar to Solution 2 after the first four lines

Solution 5 (Trig Bash)

Applying Ptolemy's Theorem on the cyclic quadrilateral $MINC$, we find that

$MI\cdot CN + IN\cdot MC = MN\cdot IC$.

$\angle CIN=\frac{\alpha+\gamma}{2}$ and $\angle MIC=\frac{\beta+\gamma}{2}$ by the Exterior Angle Theorem, so from properties of sine and cosine, we can find that

$MI=IC\cdot\cos\left(\frac{\beta+\gamma}{2}\right),$ $MC=IC\cdot\sin\left(\frac{\beta+\gamma}{2}\right),$ $IN=IC\cdot\cos\left(\frac{\alpha+\gamma}{2}\right),$ $CN=IC\cdot\sin\left(\frac{\alpha+\gamma}{2}\right).$

Plugging in the values and simplifying results in $MN = IC\cdot\sin\left(\frac{\alpha+\beta+2\gamma}{2}\right)$ by the angle-addition identity $\sin(A+B)=\sin(A)\cos(B)+\sin(B)\cos(A)$.

Before we continue, we would like to simplify the value in the sine function. We see that $\frac{\alpha+\beta+2\gamma}{2}=\frac{\gamma}{2}+\frac{\alpha+\beta+\gamma}{2}=\frac{\gamma}{2}+90$. Using the fact that $\cos(A)=\sin(90-A)$ results in

$\sin\left(\frac{\alpha+\beta+2\gamma}{2}\right)=\sin\left(90+\frac{\gamma}{2}\right)=\sin\left(90-(-\frac{\gamma}{2})\right)=\cos\left(-\frac{\gamma}{2}\right)=\cos\left(\frac{\gamma}{2}\right).$

How do we simplify $IC$? Well, we can perform the Law of Sines on triangle $AIC$. This results in:

$\frac{AC}{\sin(\angle AIC)}=\frac{IC}{\sin\left(\frac{\alpha}{2}\right)}$

The value of $\angle AIC$ is $\frac{\alpha+2\beta+\gamma}{2}$ by the Exterior Angle Theorem on $\triangle ABI$, so the value of $\sin(\angle AIC)$ is equivalent to the value of $\cos\left(\frac{\beta}{2}\right)$ by a similar argument as above. Then rearranging yields $IC = b\cdot\frac{\sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\beta}{2}\right)}$.

Going back to the previous formula $MN = IC\cdot\sin\left(\frac{\alpha+\beta+2\gamma}{2}\right)$ and substituting values yields:

$MN = b\cdot\frac{\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\gamma}{2}\right)}{\cos\left(\frac{\beta}{2}\right)}$.

Finally, using the formulae $\sin\left(\frac{\alpha}{2}\right)=\sqrt{\frac{(s-b)(s-c)}{bc}}$ and $\cos\left(\frac{\alpha}{2}\right)=\sqrt{\frac{s(s-a)}{bc}}$ (where $s$ is half the perimeter of the triangle), we reach our final value:

$MN = b\cdot\frac{\sqrt{\frac{(s-b)(s-c)}{bc}}\cdot\sqrt{\frac{s(s-c)}{ab}}}{\sqrt{\frac{s(s-b)}{ac}}}$

$=\frac{\sqrt{s(s-b)(s-c)^2}}{\sqrt{s(s-b)}}$

$=\sqrt{(s-c)^2}$

$=s-c$

$=181-125$

$=\boxed{056}.$

Video Solution

https://www.youtube.com/watch?v=yIUBhWiJ4Dk ~Mathematical Dexterity

Video Solution

https://www.youtube.com/watch?v=vkniYGN45F4

~Shreyas S

Alternate Solution: https://www.youtube.com/watch?v=L2OzYI0OJsc&t=12s

See also

2011 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png