Difference between revisions of "2002 AMC 10P Problems/Problem 14"

(Solution 1)
(Solution 1)
Line 21: Line 21:
 
[EIDJ]&=[EIJ]+[JDI] \
 
[EIDJ]&=[EIJ]+[JDI] \
 
&=\frac{1}{2}(\frac{1}{\sqrt{3}})(\frac{1}{\sqrt{3}}) + \frac{1}{2} (\frac{1}{2}-\frac{1}{2 \sqrt{3}}) (\frac{1}{2}+\frac{1}{2 \sqrt{3}}) \
 
&=\frac{1}{2}(\frac{1}{\sqrt{3}})(\frac{1}{\sqrt{3}}) + \frac{1}{2} (\frac{1}{2}-\frac{1}{2 \sqrt{3}}) (\frac{1}{2}+\frac{1}{2 \sqrt{3}}) \
&=\frac{1}{2}(\frac{1}{3})+\frac{\frac{1}{4}-\frac{1}{12}}{2} \
+
&=\frac{1}{2}(\frac{1}{3})+\frac{1}{2}({\frac{1}{4}-\frac{1}{12}) \
 
&=\frac{1}{6}+\frac{1}{12} \
 
&=\frac{1}{6}+\frac{1}{12} \
 
&=\frac{1}{4} \
 
&=\frac{1}{4} \

Revision as of 16:14, 15 July 2024

Problem 14

The vertex $E$ of a square $EFGH$ is at the center of square $ABCD.$ The length of a side of $ABCD$ is $1$ and the length of a side of $EFGH$ is $2.$ Side $EF$ intersects $CD$ at $I$ and $EH$ intersects $AD$ at $J.$ If angle $EID=60^{\circ},$ the area of quadrilateral $EIDJ$ is

$\text{(A) }\frac{1}{4} \qquad \text{(B) }\frac{\sqrt{3}}{6} \qquad \text{(C) }\frac{1}{3} \qquad \text{(D) }\frac{\sqrt{2}}{4} \qquad \text{(E) }\frac{\sqrt{3}}{2}$

Solution 1

Draw a diagram. Split quadrilateral $EIDJ$ into $\triangle EIJ$ and $\triangle JDI.$ Let the perpendicular from point $E$ intersect $AD$ at $X$, and let the perpendicular from point $E$ intersect $CD$ at $Y.$ We know $\angle EJD=120^{\circ}$ because $\angle JDC=90^{\circ}$ since $ABCD$ is a square, $\angle DCE=60^{\circ}$ as given, and $\angle CEJ = 90^{\circ},$ so $\angle EJD = 360^{\circ}-120^{\circ}-90^{\circ}-90^{\circ}-60^{\circ}=120^{\circ}.$ Since $E$ is at the center of square $ABCD$, $EX=EY=\frac{1}{2}.$ By $30^{\circ}-60^{\circ}-90^{\circ},$ $ED=\frac{EX}{\sqrt{3}}=EC=\frac{EY}{\sqrt{3}}=\frac{1}{3}.$ Additionally, we know $JD=AD-AX-XJ,$ so $JD=1-\frac{1}{2}-\frac{1}{2 \sqrt{3}}=\frac{1}{2}-\frac{1}{2 \sqrt{3}}$ and we know $ID=DY+IY,$ so $ID=\frac{1}{2}+\frac{1}{2 \sqrt{3}}.$ From here, we can sum the areas of $\triangle EIJ$ and $\triangle JDI.$ to get the area of quadrilateral $EIDJ.$ Therefore,

\begin{align*} [EIDJ]&=[EIJ]+[JDI] \ &=\frac{1}{2}(\frac{1}{\sqrt{3}})(\frac{1}{\sqrt{3}}) + \frac{1}{2} (\frac{1}{2}-\frac{1}{2 \sqrt{3}}) (\frac{1}{2}+\frac{1}{2 \sqrt{3}}) \ &=\frac{1}{2}(\frac{1}{3})+\frac{1}{2}({\frac{1}{4}-\frac{1}{12}) \ &=\frac{1}{6}+\frac{1}{12} \ &=\frac{1}{4} \ \end{align*}

Thus, our answer is $\boxed{\textbf{(A) } \frac{1}{4}}.$

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png