Difference between revisions of "1965 AHSME Problems/Problem 22"

(created solution page)
 
m (formatting fix)
Line 4: Line 4:
 
<math>a_0 + a_1x + a_2x^2 = a_0\left (1 - \frac {x}{r} \right ) \left (1 - \frac {x}{s} \right )</math> holds:  
 
<math>a_0 + a_1x + a_2x^2 = a_0\left (1 - \frac {x}{r} \right ) \left (1 - \frac {x}{s} \right )</math> holds:  
  
<math>\textbf{(A)}\ \text{for all values of }x, a_0\neq 0  
+
<math>\textbf{(A)}\ \text{for all values of }x, a_0\neq 0 \qquad
 
\textbf{(B) }\ \text{for all values of }x \
 
\textbf{(B) }\ \text{for all values of }x \
\textbf{(C) }\ \text{only when }x = 0  
+
\textbf{(C) }\ \text{only when }x = 0 \qquad
 
\textbf{(D) }\ \text{only when }x = r \text{ or }x = s \
 
\textbf{(D) }\ \text{only when }x = r \text{ or }x = s \
\textbf{(E) }\ \text{only when }x = r \text{ or }x = s, a_0 \neq 0  </math>
+
\textbf{(E) }\ \text{only when }x = r \text{ or }x = s, a_0 \neq 0  </math>
  
 
== Solution ==
 
== Solution ==

Revision as of 16:41, 18 July 2024

Problem

If $a_2 \neq 0$ and $r$ and $s$ are the roots of $a_0 + a_1x + a_2x^2 = 0$, then the equality $a_0 + a_1x + a_2x^2 = a_0\left (1 - \frac {x}{r} \right ) \left (1 - \frac {x}{s} \right )$ holds:

$\textbf{(A)}\ \text{for all values of }x, a_0\neq 0 \qquad \textbf{(B) }\ \text{for all values of }x \\ \textbf{(C) }\ \text{only when }x = 0 \qquad \textbf{(D) }\ \text{only when }x = r \text{ or }x = s \\ \textbf{(E) }\ \text{only when }x = r \text{ or }x = s, a_0 \neq 0$

Solution

$\fbox{A}$

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png