Difference between revisions of "1965 AHSME Problems/Problem 19"
(→Solution 1) |
m (added link) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
Let <math>f(x)=x^3+3x^2+9x+3</math> and <math>g(x)=x^4+4x^3+6px^2+4qx+r</math>. | Let <math>f(x)=x^3+3x^2+9x+3</math> and <math>g(x)=x^4+4x^3+6px^2+4qx+r</math>. | ||
− | Let 3 roots of <math>f(x)</math> be <math>r_1, r_2 </math> and <math>r_3</math>. As <math>f(x)|g(x)</math> , 3 roots of 4 roots of <math>g(x)</math> will be same as roots of <math>f(x)</math>. Let the 4th root of <math>g(x)</math> be <math>r_4</math>. By | + | Let 3 roots of <math>f(x)</math> be <math>r_1, r_2 </math> and <math>r_3</math>. As <math>f(x)|g(x)</math> , 3 roots of 4 roots of <math>g(x)</math> will be same as roots of <math>f(x)</math>. Let the 4th root of <math>g(x)</math> be <math>r_4</math>. By [[Vieta's Formulas]] |
In <math>f(x)</math> | In <math>f(x)</math> | ||
Line 50: | Line 50: | ||
<math>=>r=3</math> | <math>=>r=3</math> | ||
− | so <math>(p+q)r=\ | + | so <math>(p+q)r=\boxed{\textbf{(C) }15}</math> |
By ~Ahmed_Ashhab | By ~Ahmed_Ashhab | ||
− | |||
== Solution 2 == | == Solution 2 == | ||
− | Notice that to obtain the <math>x^4</math> term one must multiply <math>x^4+4x^3+6px^2+4qx+r</math> by some linear function of the form <math>x-a</math>. Looking at the <math>x^3</math> term, it is clear that <math>a</math> must equal <math>1</math>. Therefore by multiplying <math>x^4+4x^3+6px^2+4qx+r</math> by <math>x+1</math>, the product will be <math>x^4+4x^3+12x^2+12x+3</math>. Therefore <math>p=2</math>, <math>q=3</math>, <math>r=3</math>. Thus <math>(2+3)3=\ | + | Notice that to obtain the <math>x^4</math> term one must multiply <math>x^4+4x^3+6px^2+4qx+r</math> by some linear function of the form <math>x-a</math>. Looking at the <math>x^3</math> term, it is clear that <math>a</math> must equal <math>1</math>. Therefore by multiplying <math>x^4+4x^3+6px^2+4qx+r</math> by <math>x+1</math>, the product will be <math>x^4+4x^3+12x^2+12x+3</math>. Therefore <math>p=2</math>, <math>q=3</math>, <math>r=3</math>. Thus <math>(2+3)3=\boxed{\textbf{(C) }15}</math> |
== See Also == | == See Also == | ||
− | {{AHSME 40p box|year=1965|num-b= | + | {{AHSME 40p box|year=1965|num-b=18|num-a=20}} |
{{MAA Notice}} | {{MAA Notice}} | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] |
Latest revision as of 10:17, 29 July 2024
Contents
[hide]Problem 19
If is exactly divisible by , the value of is:
Solution 1
Let and .
Let 3 roots of be and . As , 3 roots of 4 roots of will be same as roots of . Let the 4th root of be . By Vieta's Formulas
In
In
so
By ~Ahmed_Ashhab
Solution 2
Notice that to obtain the term one must multiply by some linear function of the form . Looking at the term, it is clear that must equal . Therefore by multiplying by , the product will be . Therefore , , . Thus
See Also
1965 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.