Difference between revisions of "2002 AMC 12B Problems/Problem 24"

m (Solution: minor typo)
(Solution: using asymptote for once, how do you draw a (right) angle?)
Line 16: Line 16:
  
 
Since we have the equality case, <math>\overline{AC} \perp \overline{BD}</math> at point <math>P</math>.  
 
Since we have the equality case, <math>\overline{AC} \perp \overline{BD}</math> at point <math>P</math>.  
[[Image:2002_12B_AMC-24.png|center]]
+
 
 +
<center><asy>
 +
size(200);
 +
defaultpen(0.6);
 +
pair A = (0,0), B = (40,0), C = (25.6 * 52 / 24, 19.2 * 52 / 24), D = (40 - (40-25.6)*77/32,19.2*77/32), P = (25.6,19.2), Q = (25.6, 18.5);
 +
pair E=(A+P)/2, F=(B+P)/2, G=(C+P)/2, H=(D+P)/2;
 +
draw(A--B--C--D--cycle);
 +
draw(A--P--B--P--C--P--D);
 +
label("A",A,WSW);
 +
label("B",B,ESE);
 +
label("C",C,ESE);
 +
label("D",D,NW);
 +
label("P",Q,SSW);
 +
label("24",E,WNW);
 +
label("32",F,WSW);
 +
label("28",G,ESE);
 +
label("45",H,ENE);
 +
</asy></center>
  
 
By the [[Pythagorean Theorem]],   
 
By the [[Pythagorean Theorem]],   

Revision as of 12:26, 19 January 2008

Problem

A convex quadrilateral $ABCD$ with area $2002$ contains a point $P$ in its interior such that $PA = 24, PB = 32, PC = 28, PD = 45$. Find the perimeter of $ABCD$.

$\mathrm{(A)}\ 4\sqrt{2002} \qquad \mathrm{(B)}\ 2\sqrt{8465} \qquad \mathrm{(C)}\ 2$ $(48+\sqrt{2002}) \qquad \mathrm{(D)}\ 2\sqrt{8633} \qquad \mathrm{(E)}\ 4(36 + \sqrt{113})$

Solution

We have \[[ABCD] = 2002 \le \frac 12 (AC \cdot BD)\] (Why is this true? Try splitting the quadrilateral along $AC$ and then using the triangle area formula), with equality if $\overline{AC} \perp \overline{BD}$. By the triangle inequality,

\begin{align*}AC &\le PA + PC = 52\\ BD &\le PB + PD = 77\end{align*}

with equality if $P$ lies on $\overline{AC}$ and $\overline{BD}$ respectively. Thus

\[2002 \le \frac{1}{2} AC \cdot BD \le \frac 12 \cdot 52 \cdot 77 = 2002\]

Since we have the equality case, $\overline{AC} \perp \overline{BD}$ at point $P$.

[asy] size(200); defaultpen(0.6); pair A = (0,0), B = (40,0), C = (25.6 * 52 / 24, 19.2 * 52 / 24), D = (40 - (40-25.6)*77/32,19.2*77/32), P = (25.6,19.2), Q = (25.6, 18.5); pair E=(A+P)/2, F=(B+P)/2, G=(C+P)/2, H=(D+P)/2; draw(A--B--C--D--cycle); draw(A--P--B--P--C--P--D); label("\(A\)",A,WSW); label("\(B\)",B,ESE); label("\(C\)",C,ESE); label("\(D\)",D,NW); label("\(P\)",Q,SSW); label("24",E,WNW); label("32",F,WSW); label("28",G,ESE); label("45",H,ENE); [/asy]

By the Pythagorean Theorem, \begin{align*} AB = \sqrt{PA^2 + PB^2} & = \sqrt{24^2 + 32^2} = 40\\ BC = \sqrt{PB^2 + PC^2} & = \sqrt{32^2 + 28^2} = 4\sqrt{113}\\ CD = \sqrt{PC^2 + PD^2} & = \sqrt{28^2 + 45^2} = 53\\ DA = \sqrt{PD^2 + PA^2} & = \sqrt{45^2 + 24^2} = 51 \end{align*}

The perimeter of $ABCD$ is $AB + BC + CD + DA = 4(36 + \sqrt{113}) \Rightarrow \mathrm{(E)}$.

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions