Difference between revisions of "Orthocenter"

(Replaced Ceva proof with more elegant Euler line proof)
m (Properties)
 
(27 intermediate revisions by 16 users not shown)
Line 1: Line 1:
The '''orthocenter''' of a [[triangle]] is the point of intersection of its [[altitude]]s.  It is conventionally denoted as <math>\displaystyle H</math>.
+
The '''orthocenter''' of a [[triangle]] is the point of intersection of its [[altitude|altitudes]].  It is [[mathematical convention | conventionally]] denoted <math>H</math>.
 +
<asy>
 +
size(15cm);
 +
markscalefactor = 0.01;
 +
dot((0,0));
 +
dot((4,0));
 +
dot((3,3));
 +
dot((3,0));
 +
dot((2,2));
 +
dot((3,1));
 +
dot((3.6,1.2));
 +
draw((0,0)--(4,0)--(3,3)--cycle);
 +
draw((0,0)--(3.6,1.2),red);
 +
draw((2,2)--(4,0),red);
 +
draw((3,0)--(3,3), red);
 +
draw(rightanglemark((0,0),(3,0),(3,1)));
 +
draw(rightanglemark((4,0),(3.6,1.2),(0,0)));
 +
draw(rightanglemark((0,0),(2,2),(4,0)));
 +
label("Orthocenter",(2.85,1.1),W);
 +
</asy>
 +
The lines highlighted are the [[altitude|altitudes]] of the triangle, they meet at the orthocenter.
  
 +
== Proof of Existence ==
 +
''Note: The orthocenter's existence is a trivial consequence of the trigonometric version of [[Ceva's Theorem]]; however, the following proof, due to [[Leonhard Euler]], is much more clever, illuminating and insightful.''
 +
 +
<asy>
 +
defaultpen(fontsize(8));
 +
pair A=(8,7), B=(0,0), C=(10,0), A1 = (B+C)/2, O = circumcenter(A,B,C), G = (A+B+C)/3, H = 3*G-2*O;
 +
draw(A--B--C--cycle);
 +
draw(A--G--H--cycle);
 +
draw(A1--G--O--cycle);
 +
label("A",A,(0,1));label("B",B,(0,-1));label("C",C,(0,-1));label("G",G,(1,-1));label("H",H,(0,-1));label("O",O,(-1,1));label("$A'$",A1,(0,-1));dot(H);
 +
</asy>
 +
Consider a triangle <math>ABC</math> with [[circumcenter]] <math>O</math> and [[centroid]] <math>G</math>.  Let <math>A'</math> be the midpoint of <math>BC</math>.  Let <math>H</math> be the point such that <math>G</math> is between <math>H</math> and <math>O</math> and <math>HG = 2 GO</math>.  Then the triangles <math>AGH</math>, <math>A'GO</math> are [[similar]] by side-angle-side similarity.  It follows that <math>AH</math> is parallel to <math>OA'</math> and is therefore perpendicular to <math>BC</math>; i.e., it is the altitude from <math>A</math>.  Similarly, <math>BH</math>, <math>CH</math>, are the altitudes from <math>B</math>, <math>{C}</math>.  Hence all the altitudes pass through <math>H</math>.  Q.E.D.
 +
 +
This proof also gives us the result that the orthocenter, centroid, and circumcenter are [[collinear]], in that order, and in the proportions described above.  The line containing these three points is known as the [[Euler line]] of the triangle, and also contains the triangle's [[de Longchamps point]] and [[nine-point center]].
 +
 +
=== Easier proof ===
 +
That seems somewhat overkill to prove the existence of the orthocenter. We use a much easier (and funnier) way.
  
[[Image:Orthoproof1.PNG|center]]
 
  
 +
<asy>
 +
    import olympiad;
 +
    size(4cm);
 +
    pair A=dir(110), B=dir(200), C=dir(-20), D,E,F,H;
 +
    H=orthocenter(A,B,C);
 +
    D=B+C-A;
 +
    E=C+A-B;
 +
    F=A+B-C;
 +
    draw(A--B--C--A);
 +
    draw(D--E--F--D);
 +
    draw(A--H,dotted);
 +
    draw(B--H,dotted);
 +
    draw(C--H,dotted);
 +
    label("A",A,N);
 +
    label("B",B,dir(190));
 +
    label("C",C,dir(-10));
 +
    label("D",D,S);
 +
    label("E",E,dir(45));
 +
    label("F",F,dir(140));
 +
    label("H",H,dir(50));
 +
</asy>
  
== Proof of Existence ==
 
  
''Note: The orthocenter's existence is a trivial consequence of the [[trigonometric version of Ceva's Theorem]]; however, the following proof, due to [[Leonhard Euler | Euler]], is much more clever, illuminating and insightful.''
+
Let the line through <math>B</math> parallel to <math>AC</math> and the line through <math>C</math> parallel to <math>AB</math> intersect at <math>D.</math> Define <math>E,F</math> similarly.
 +
 
 +
(Alternatively, <math>\triangle DEF</math> can be constructed by reflecting <math>\triangle ABC</math> across each of its edges' midpoints, respectively.)
 +
 
 +
Note that <math>FA=BC=AE</math> (and likewise for the other sides <math>AB</math> and <math>CA</math> of <math>\triangle ABC</math>), and so each altitude of <math>\triangle ABC</math> is a perpendicular bisector of <math>\triangle DEF</math>.
 +
 
 +
Since the perpendicular bisectors of <math>\triangle DEF</math> intersect (at its circumcenter), this intersection point is also the the intersection of altitudes of <math>\triangle ABC</math>, its orthocenter.
 +
 
 +
==Properties==
 +
* The orthocenter and the circumcenter of a triangle are [[isogonal conjugate]]s.
 +
* If the orthocenter's triangle is [[acute triangle|acute]], then the orthocenter is in the triangle; if the triangle is [[right triangle|right]], then it is on the vertex opposite the [[hypotenuse]]; and if it is [[obtuse triangle|obtuse]], then the orthocenter is outside the triangle.
 +
* Let <math>ABC</math> be a triangle and <math>H</math> its orthocenter. Then the reflections of <math>H</math> over <math>AB</math>, <math>BC</math>, and <math>CA</math> are on the circumcircle of <math>ABC</math>:
 +
<asy>
 +
defaultpen(fontsize(8));
 +
pair A=(8,7), B=(0,0), C=(10,0), H=orthocenter(A,B,C), A1, B1, C1;
 +
A1 = 2*foot(A,B,C)-H;
 +
B1 = 2*foot(B,C,A)-H;
 +
C1 = 2*foot(C,A,B)-H;
 +
draw(A--B--C--cycle,black+1);
 +
draw(A--A1);draw(B--B1);draw(C--C1);
 +
draw(A1--B--C1--A--B1--C--cycle);
 +
draw(circumcircle(A,B,C));
 +
dot(A1^^B1^^C1^^H);
 +
label("$A$",A,(0,1));label("$B$",B,(-1,0));label("$C$",C,(1,0));
 +
label("$A'$",A1,(0,-1));label("$B'$",B1,(1,1));label("$C'$",C1,(-1,1));
 +
label("$H$",H,(-1,-1));
 +
</asy>
 +
 
 +
*Even more interesting is the fact that if you take any point <math>P</math> on the circumcircle and let <math>M</math> be the midpoint of <math>HP</math>, then <math>M</math> is on the nine-point circle.
 +
 
 +
==Resources==
 +
[http://www.artofproblemsolving.com/Books/AoPS_B_Item.php?page_id=2 Art of Problem Solving Volume 2] - Example 21-4
 +
Euclidean Geometry in Mathematical Olympiads by Evan Chen - Section 1.3
  
Consider a triangle <math>\displaystyle ABC</math> with [[circumcenter]] <math>\displaystyle O</math> and [[centroid]] <math>\displaystyle G</math>.  Let <math>\displaystyle A'</math> be the midpoint of <math>\displaystyle BC</math>.  Let <math>\displaystyle H</math> be the point such that <math>\displaystyle G</math> is between <math>\displaystyle H</math> and <math>\displaystyle O</math> and <math>\displaystyle HG = 2 HO</math>.  Then the triangles <math>\displaystyle AGH</math>, <math>\displaystyle A'GO</math> are [[similar]] by angle-side-angle similarity.  It follows that <math>\displaystyle AH</math> is parallel to <math>\displaystyle OA'</math> and is therefore perpendicular to <math>\displaystyle BC</math>; i.e., it is the altitude from <math>\displaystyle A</math>.  Similarly, <math>\displaystyle BH</math>, <math>\displaystyle CH</math>, are the altitudes from <math>\displaystyle B</math>, <math>\displaystyle {C}</math>.  Hence all the altitudes pass through <math>\displaystyle H</math>.  Q.E.D.
+
==See Also==
 +
*[[Centroid]]
 +
*[[Incenter]]
 +
*[[Altitude]]
 +
*[[Circumcenter]]
 +
*[[de Longchamps point]]
  
This proof also gives us the result that the orthocenter, centroid, and circumcenter are [[collinear]], in that order, and in the proportions described above.  The line containing these three points is known as the [[Euler line]], after the person to whom this proof is due.
+
[[Category:Definition]]
 +
[[Category:Geometry]]

Latest revision as of 13:09, 18 October 2024

The orthocenter of a triangle is the point of intersection of its altitudes. It is conventionally denoted $H$. [asy] size(15cm); markscalefactor = 0.01; dot((0,0)); dot((4,0)); dot((3,3)); dot((3,0)); dot((2,2)); dot((3,1)); dot((3.6,1.2)); draw((0,0)--(4,0)--(3,3)--cycle); draw((0,0)--(3.6,1.2),red); draw((2,2)--(4,0),red); draw((3,0)--(3,3), red); draw(rightanglemark((0,0),(3,0),(3,1))); draw(rightanglemark((4,0),(3.6,1.2),(0,0))); draw(rightanglemark((0,0),(2,2),(4,0))); label("Orthocenter",(2.85,1.1),W); [/asy] The lines highlighted are the altitudes of the triangle, they meet at the orthocenter.

Proof of Existence

Note: The orthocenter's existence is a trivial consequence of the trigonometric version of Ceva's Theorem; however, the following proof, due to Leonhard Euler, is much more clever, illuminating and insightful.

[asy] defaultpen(fontsize(8)); pair A=(8,7), B=(0,0), C=(10,0), A1 = (B+C)/2, O = circumcenter(A,B,C), G = (A+B+C)/3, H = 3*G-2*O; draw(A--B--C--cycle); draw(A--G--H--cycle); draw(A1--G--O--cycle); label("A",A,(0,1));label("B",B,(0,-1));label("C",C,(0,-1));label("G",G,(1,-1));label("H",H,(0,-1));label("O",O,(-1,1));label("$A'$",A1,(0,-1));dot(H); [/asy] Consider a triangle $ABC$ with circumcenter $O$ and centroid $G$. Let $A'$ be the midpoint of $BC$. Let $H$ be the point such that $G$ is between $H$ and $O$ and $HG = 2 GO$. Then the triangles $AGH$, $A'GO$ are similar by side-angle-side similarity. It follows that $AH$ is parallel to $OA'$ and is therefore perpendicular to $BC$; i.e., it is the altitude from $A$. Similarly, $BH$, $CH$, are the altitudes from $B$, ${C}$. Hence all the altitudes pass through $H$. Q.E.D.

This proof also gives us the result that the orthocenter, centroid, and circumcenter are collinear, in that order, and in the proportions described above. The line containing these three points is known as the Euler line of the triangle, and also contains the triangle's de Longchamps point and nine-point center.

Easier proof

That seems somewhat overkill to prove the existence of the orthocenter. We use a much easier (and funnier) way.


[asy]     import olympiad;     size(4cm);     pair A=dir(110), B=dir(200), C=dir(-20), D,E,F,H;     H=orthocenter(A,B,C);     D=B+C-A;     E=C+A-B;     F=A+B-C;     draw(A--B--C--A);     draw(D--E--F--D);     draw(A--H,dotted);     draw(B--H,dotted);     draw(C--H,dotted);     label("A",A,N);     label("B",B,dir(190));     label("C",C,dir(-10));     label("D",D,S);     label("E",E,dir(45));     label("F",F,dir(140));     label("H",H,dir(50)); [/asy]


Let the line through $B$ parallel to $AC$ and the line through $C$ parallel to $AB$ intersect at $D.$ Define $E,F$ similarly.

(Alternatively, $\triangle DEF$ can be constructed by reflecting $\triangle ABC$ across each of its edges' midpoints, respectively.)

Note that $FA=BC=AE$ (and likewise for the other sides $AB$ and $CA$ of $\triangle ABC$), and so each altitude of $\triangle ABC$ is a perpendicular bisector of $\triangle DEF$.

Since the perpendicular bisectors of $\triangle DEF$ intersect (at its circumcenter), this intersection point is also the the intersection of altitudes of $\triangle ABC$, its orthocenter.

Properties

  • The orthocenter and the circumcenter of a triangle are isogonal conjugates.
  • If the orthocenter's triangle is acute, then the orthocenter is in the triangle; if the triangle is right, then it is on the vertex opposite the hypotenuse; and if it is obtuse, then the orthocenter is outside the triangle.
  • Let $ABC$ be a triangle and $H$ its orthocenter. Then the reflections of $H$ over $AB$, $BC$, and $CA$ are on the circumcircle of $ABC$:

[asy] defaultpen(fontsize(8)); pair A=(8,7), B=(0,0), C=(10,0), H=orthocenter(A,B,C), A1, B1, C1; A1 = 2*foot(A,B,C)-H; B1 = 2*foot(B,C,A)-H; C1 = 2*foot(C,A,B)-H; draw(A--B--C--cycle,black+1); draw(A--A1);draw(B--B1);draw(C--C1); draw(A1--B--C1--A--B1--C--cycle); draw(circumcircle(A,B,C)); dot(A1^^B1^^C1^^H); label("$A$",A,(0,1));label("$B$",B,(-1,0));label("$C$",C,(1,0)); label("$A'$",A1,(0,-1));label("$B'$",B1,(1,1));label("$C'$",C1,(-1,1)); label("$H$",H,(-1,-1)); [/asy]

  • Even more interesting is the fact that if you take any point $P$ on the circumcircle and let $M$ be the midpoint of $HP$, then $M$ is on the nine-point circle.

Resources

Art of Problem Solving Volume 2 - Example 21-4 Euclidean Geometry in Mathematical Olympiads by Evan Chen - Section 1.3

See Also