Difference between revisions of "2008 AMC 8 Problems/Problem 17"
Sootommylee (talk | contribs) |
(→Solution) |
||
Line 10: | Line 10: | ||
==Solution== | ==Solution== | ||
A rectangle's area is maximized when its length and width are equivalent, or the two side lengths are closest together in this case with integer lengths. This occurs with the sides <math>12 \times 13 = 156</math>. Likewise, the area is smallest when the side lengths have the greatest difference, which is <math>1 \times 24 = 24</math>. The difference in area is <math>156-24=\boxed{\textbf{(D)}\ 132}</math>. | A rectangle's area is maximized when its length and width are equivalent, or the two side lengths are closest together in this case with integer lengths. This occurs with the sides <math>12 \times 13 = 156</math>. Likewise, the area is smallest when the side lengths have the greatest difference, which is <math>1 \times 24 = 24</math>. The difference in area is <math>156-24=\boxed{\textbf{(D)}\ 132}</math>. | ||
− | + | THIS IS LIKE THE BEST SOLUTION EVER!!! | |
==Video Solution== | ==Video Solution== |
Revision as of 19:59, 25 October 2024
Contents
[hide]Problem
Ms.Osborne asks each student in her class to draw a rectangle with integer side lengths and a perimeter of units. All of her students calculate the area of the rectangle they draw. What is the difference between the largest and smallest possible areas of the rectangles?
Solution
A rectangle's area is maximized when its length and width are equivalent, or the two side lengths are closest together in this case with integer lengths. This occurs with the sides . Likewise, the area is smallest when the side lengths have the greatest difference, which is . The difference in area is . THIS IS LIKE THE BEST SOLUTION EVER!!!
Video Solution
https://youtu.be/9bVwSsWa8IY Soo, DRMS, NM
See Also
2008 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.