Difference between revisions of "Combinatorial identity"

(Unnecessary Text)
m (Prooff)
(73 intermediate revisions by 22 users not shown)
Line 1: Line 1:
 +
== Pascal's Identity ==
 +
Pascal's Identity states that
 +
 +
<math>{n \choose k}={n-1\choose k-1}+{n-1\choose k}</math>
 +
 +
for any [[positive integer]]s <math>k</math> and <math>n</math>.  Here, <math>\binom{n}{k}</math> is the binomial coefficient <math>\binom{n}{k} = {}_nC_k = C_k^n</math>.
 +
 +
This result can be interpreted combinatorially as follows: the number of ways to choose <math>k</math> things from <math>n</math> things is equal to the number of ways to choose <math>k-1</math> things from <math>n-1</math> things added to the number of ways to choose <math>k</math> things from <math>n-1</math> things.
 +
 +
=== Proof ===
 +
If <math>k > n</math> then <math>\binom{n}{k} = 0 = \binom{n - 1}{k - 1} + \binom{n - 1}{k}</math> and so the result is trivial.  So assume <math>k \leq n</math>.  Then
 +
 +
<cmath>\begin{eqnarray*}\binom{n-1}{k-1}+\binom{n-1}{k}&=&\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!}\
 +
&=&(n-1)!\left(\frac{k}{k!(n-k)!}+\frac{n-k}{k!(n-k)!}\right)\
 +
&=&(n-1)!\cdot \frac{n}{k!(n-k)!}\
 +
&=&\frac{n!}{k!(n-k)!}\
 +
&=&\binom{n}{k}. \qquad\qquad\square\end{eqnarray*}</cmath>
 +
 +
===Alternate Proofs===
 +
Here, we prove this using [[committee forming]].
 +
 +
Consider picking one fixed object out of <math>n</math> objects. Then, we can choose <math>k</math> objects including that one in <math>\binom{n-1}{k-1}</math> ways.
 +
 +
Because our final group of objects either contains the specified one or doesn't, we can choose the group in <math>\binom{n-1}{k-1}+\binom{n-1}{k}</math> ways.
 +
 +
But we already know they can be picked in <math>\binom{n}{k}</math> ways, so
 +
 +
<cmath>{n \choose k}={n-1\choose k-1}+{n-1\choose k} </cmath>
 +
 +
 +
Also, we can look at Pascal's Triangle to see why this is. If we were to extend Pascal's Triangle to row n, we would see the term <math>\binom{n}{k}</math>. Above that, we would see the terms <math>{n-1\choose k-1}</math> and <math>{n-1\choose k}</math>. Due to the definition of Pascal's Triangle, <math>{n \choose k}={n-1\choose k-1}+{n-1\choose k}</math>.
 +
 
==Vandermonde's Identity==
 
==Vandermonde's Identity==
 
Vandermonde's Identity states that <math>\sum_{k=0}^r\binom mk\binom n{r-k}=\binom{m+n}r</math>, which can be proven combinatorially by noting that any combination of <math>r</math> objects from a group of <math>m+n</math> objects must have some <math>0\le k\le r</math> objects from group <math>m</math> and the remaining from group <math>n</math>.
 
Vandermonde's Identity states that <math>\sum_{k=0}^r\binom mk\binom n{r-k}=\binom{m+n}r</math>, which can be proven combinatorially by noting that any combination of <math>r</math> objects from a group of <math>m+n</math> objects must have some <math>0\le k\le r</math> objects from group <math>m</math> and the remaining from group <math>n</math>.
Line 5: Line 37:
  
 
https://www.youtube.com/watch?v=u1fktz9U9ig
 
https://www.youtube.com/watch?v=u1fktz9U9ig
 +
 +
===Combinatorial Proof===
 +
 +
Think of the right hand side as picking <math>r</math> people from <math>m</math> men and <math>n</math> women. Think of the left hand side as picking <math>k</math> men from the <math>m</math> total men and picking <math>r-k</math> women from the <math>n</math> total women. The left hand side and right hand side are the same, thus Vandermonde's identity must be true.
  
 
~avn
 
~avn
 +
 +
===Algebraic proof===
 +
For all <math>x,</math> <cmath>(1+x)^m(1+x)^n = (1+x)^{m+n}</cmath>
 +
The coefficients of <math>x^r</math> on both sides must be the same, so using the [[Binomial Theorem]], <cmath>\sum_{k=0}^r \binom mk \binom n{r-k} = \binom {m+n}r.</cmath>
  
 
==Hockey-Stick Identity==
 
==Hockey-Stick Identity==
Line 32: Line 72:
 
</asy>
 
</asy>
  
This identity is known as the ''hockey-stick'' identity because, on Pascal's triangle, when the addends represented in the summation and the sum itself is highlighted, a hockey-stick shape is revealed.
+
This identity is known as the ''hockey-stick'' identity because, on Pascal's triangle, when the addends represented in the summation and the sum itself is highlighted, a hockey-stick shape is revealed. We can also flip the hockey stick because pascal's triangle is symmetrical.
  
  
Line 61: Line 101:
 
'''Combinatorial Proof 1'''
 
'''Combinatorial Proof 1'''
  
Imagine that we are distributing <math>n</math> indistinguishable candies to <math>k</math> distinguishable children. By a direct application of Balls and Holes, there are <math>{n+k-1\choose k-1}</math> ways to do this. Alternatively, we can first give <math>0\le i\le n</math> candies to the oldest child so that we are essentially giving <math>n-i</math> candies to <math>k-1</math> kids and again, with Balls and Holes, <math>{n+k-1\choose k-1}=\sum_{i=0}^n{n+k-2-i\choose k-2}</math>, which simplifies to the desired result.
+
Imagine that we are distributing <math>n</math> indistinguishable candies to <math>k</math> distinguishable children. By a direct application of Balls and Urns, there are <math>{n+k-1\choose k-1}</math> ways to do this. Alternatively, we can first give <math>0\le i\le n</math> candies to the oldest child so that we are essentially giving <math>n-i</math> candies to <math>k-1</math> kids and again, with Balls and Urns, <math>{n+k-1\choose k-1}=\sum_{i=0}^n{n+k-2-i\choose k-2}</math>, which simplifies to the desired result.
  
 
'''Combinatorial Proof 2'''
 
'''Combinatorial Proof 2'''
Line 67: Line 107:
 
We can form a committee of size <math>k+1</math> from a group of <math>n+1</math> people in <math>{{n+1}\choose{k+1}}</math> ways. Now we hand out the numbers <math>1,2,3,\dots,n-k+1</math> to <math>n-k+1</math> of the <math>n+1</math> people.  We can divide this into <math>n-k+1</math> disjoint cases.  In general, in case <math>x</math>, <math>1\le x\le n-k+1</math>, person <math>x</math> is on the committee and persons <math>1,2,3,\dots, x-1</math> are not on the committee.  This can be done in <math>\binom{n-x+1}{k}</math> ways.  Now we can sum the values of these <math>n-k+1</math> disjoint cases, getting <cmath>{{n+1}\choose {k+1}} ={{n}\choose{k}}+{{n-1}\choose{k}}+{{n-2}\choose{k}}+\hdots+{{k+1}\choose{k}}+{{k}\choose{k}}.</cmath>
 
We can form a committee of size <math>k+1</math> from a group of <math>n+1</math> people in <math>{{n+1}\choose{k+1}}</math> ways. Now we hand out the numbers <math>1,2,3,\dots,n-k+1</math> to <math>n-k+1</math> of the <math>n+1</math> people.  We can divide this into <math>n-k+1</math> disjoint cases.  In general, in case <math>x</math>, <math>1\le x\le n-k+1</math>, person <math>x</math> is on the committee and persons <math>1,2,3,\dots, x-1</math> are not on the committee.  This can be done in <math>\binom{n-x+1}{k}</math> ways.  Now we can sum the values of these <math>n-k+1</math> disjoint cases, getting <cmath>{{n+1}\choose {k+1}} ={{n}\choose{k}}+{{n-1}\choose{k}}+{{n-2}\choose{k}}+\hdots+{{k+1}\choose{k}}+{{k}\choose{k}}.</cmath>
  
'''Combinatorial Proof 3'''
 
  
Think of the right hand side as picking <math>r</math> people from <math>m</math> men and <math>n</math> women. Think of the left hand side as picking <math>k</math> men from the <math>m</math> total men and picking <math>r-k</math> women from the <math>n</math> total women. The left hand side and right hand side are the same, thus Vandermonde's identity must be true.
 
  
 
'''Algebraic Proof 2'''
 
'''Algebraic Proof 2'''
  
 
Apply the finite geometric series formula to <math>(1+x)</math>: <cmath>1+(1+x)+(1+x)^2+...+(1+x)^n=\frac{(1+x)^{n+1}-1}{(1+x)-1}</cmath> Then expand with the Binomial Theorem and simplify: <cmath>1+(1+x)+(1+2x+x^2)+...+ \left (\binom{n}{0}+\binom{n}{1}x+\binom{n}{2}x^2+...+\binom{n}{n-1}x^{n-1}+\binom{n}{n}x^n \right )=\binom{n+1}{1}+\binom{n+1}{2}x+...+\binom{n+1}{n+1}x^n</cmath> Finally, equate coefficients of <math>x^m</math> on both sides: <cmath>\binom{0}{m}+\binom{1}{m}+\binom{2}{m}+...+\binom{n}{m}=\binom{n+1}{m+1}</cmath> Since for <math>i<m</math>, <math>\binom{i}{m}=0</math>, this simplifies to the hockey stick identity.
 
Apply the finite geometric series formula to <math>(1+x)</math>: <cmath>1+(1+x)+(1+x)^2+...+(1+x)^n=\frac{(1+x)^{n+1}-1}{(1+x)-1}</cmath> Then expand with the Binomial Theorem and simplify: <cmath>1+(1+x)+(1+2x+x^2)+...+ \left (\binom{n}{0}+\binom{n}{1}x+\binom{n}{2}x^2+...+\binom{n}{n-1}x^{n-1}+\binom{n}{n}x^n \right )=\binom{n+1}{1}+\binom{n+1}{2}x+...+\binom{n+1}{n+1}x^n</cmath> Finally, equate coefficients of <math>x^m</math> on both sides: <cmath>\binom{0}{m}+\binom{1}{m}+\binom{2}{m}+...+\binom{n}{m}=\binom{n+1}{m+1}</cmath> Since for <math>i<m</math>, <math>\binom{i}{m}=0</math>, this simplifies to the hockey stick identity.
 +
 +
'''Algebraic Proof 3'''
 +
 +
Consider the number of solutions to the equation <math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> ≤ N where each <math>a_i</math> is a
 +
non-negative integer for 1≤i≤r.
 +
 +
'''METHOD 1'''
 +
We know since all numbers on LHS are non-negative therefore 0≤N and N is a integer.
 +
 +
Therfore, <math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> = 0,1,2......N. Consider each case seperately.
 +
 +
<math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> =0 by [[Stars-and-bars]] the equation has <math>\binom {0+r-1}{r-1}</math> solutions.
 +
 +
<math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> =1 by [[Stars-and-bars]] the equation has <math>\binom {1+r-1}{r-1}</math> solutions.
 +
 +
<math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> =2 by [[Stars-and-bars]] the equation has <math>\binom {2+r-1}{r-1}</math> solutions.
 +
 +
...........
 +
<math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> =N by [[Stars-and-bars]] the equation has <math>\binom {N+r-1}{r-1}</math> solutions.
 +
 +
Hence, the equation has <math>\binom {r-1}{r-1}</math>+ <math>\binom {r}{r-1}</math>+ <math>\binom {r+1}{r-1}</math>+.... <math>\binom {N+r-1}{r-1}</math>= <math>\sum^k_{i=r-1}{i\choose r-1}</math> (where k=N+r-1) SOLUTIONS.
 +
 +
'''METHOD 2'''
 +
Since, <math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> ≤ N Therefore we may say <math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> = N -m  where m is another non-negative integer.
 +
0 ≤<math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> ⇒ 0≤ N-m ⇒ m≤ N  So, we need not count this as an extra restriction.
 +
 +
Now, <math>a_1</math>+<math>a_2</math>+<math>a_3</math>+<math>a_4</math>+<math>a_5</math>+<math>a_6</math>+.......+<math>a_r</math> +m = N. Again by [[Stars-and-bars]] this has <math>\binom {N+r}{r}</math> solutions.
 +
 +
Therefore, the equation has <math>\binom {N+r}{r}</math> = <math>\binom {k+1}{r}</math>  solutions(As N+r-1 =k).
 +
 +
Since, both methods yeild the same answer ⇒''' <math>\sum^k_{i=r-1}{i\choose r-1}</math> = <math>\binom {k+1}{r}</math>'''. Taking r-1= p redirects to the honeystick identity.
 +
 +
~SANSGANKRSNGUPTA
  
 
==Another Identity==
 
==Another Identity==
Line 85: Line 156:
  
 
===Proof 2===
 
===Proof 2===
This is a special case of Vandermonde's identity, in which we set <math>m=n</math> and <math>r=m</math>.
+
This is a special case of Vandermonde's identity, in which we set <math>m=n=r</math>.
  
 +
== Even Odd Identity ==
 +
<cmath>
 +
\sum_{k=0}^m (-1)^k \binom{n}{k}= (-1)^m \binom{n-1}{m}
 +
</cmath>
  
 
== Examples ==
 
== Examples ==
 
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=394407#394407 1986 AIME Problem 11]
 
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=394407#394407 1986 AIME Problem 11]
 
* [http://www.artofproblemsolving.com/Forum/resources.php?c=182&cid=45&year=2000&p=385891 2000 AIME II Problem 7]
 
* [http://www.artofproblemsolving.com/Forum/resources.php?c=182&cid=45&year=2000&p=385891 2000 AIME II Problem 7]
* [https://artofproblemsolving.com/wiki/index.php?title=2013_AIME_I_Problems/Problem_6#Solution_Two 2013 AIME II Problem 6 (Solution 2)]
+
* [https://artofproblemsolving.com/wiki/index.php?title=2013_AIME_I_Problems/Problem_6#Solution_2 2013 AIME I Problem 6 (Solution 2)]
 
* [http://artofproblemsolving.com/wiki/index.php/2015_AIME_I_Problems/Problem_12 2015 AIME I Problem 12]
 
* [http://artofproblemsolving.com/wiki/index.php/2015_AIME_I_Problems/Problem_12 2015 AIME I Problem 12]
 +
* [http://artofproblemsolving.com/wiki/index.php/2018_AIME_I_Problems/Problem_10 2018 AIME I Problem 10]
 
* [https://artofproblemsolving.com/wiki/index.php/2020_AIME_I_Problems/Problem_7 2020 AIME I Problem 7]
 
* [https://artofproblemsolving.com/wiki/index.php/2020_AIME_I_Problems/Problem_7 2020 AIME I Problem 7]
 +
* [https://artofproblemsolving.com/wiki/index.php/2016_AMC_10A_Problems/Problem_20 2016 AMC 10A Problem 20]
 +
* [https://artofproblemsolving.com/wiki/index.php/2021_AMC_12A_Problems/Problem_15 2021 AMC 12A  Problem 15]
 +
* [https://artofproblemsolving.com/wiki/index.php/1981_IMO_Problems 1981 IMO Problem 2]
 +
* [https://artofproblemsolving.com/wiki/index.php/2022_AIME_I_Problems/Problem_12  2022 AIME I Problem 12 ]
  
 
==See also==
 
==See also==
 
* [[Pascal's Triangle]]
 
* [[Pascal's Triangle]]
 
* [[Combinatorics]]
 
* [[Combinatorics]]
 +
* [[Pascal's Identity]]
  
 
[[Category:Theorems]]
 
[[Category:Theorems]]
  
 
[[Category:Combinatorics]]
 
[[Category:Combinatorics]]

Revision as of 22:47, 27 October 2024

Pascal's Identity

Pascal's Identity states that

${n \choose k}={n-1\choose k-1}+{n-1\choose k}$

for any positive integers $k$ and $n$. Here, $\binom{n}{k}$ is the binomial coefficient $\binom{n}{k} = {}_nC_k = C_k^n$.

This result can be interpreted combinatorially as follows: the number of ways to choose $k$ things from $n$ things is equal to the number of ways to choose $k-1$ things from $n-1$ things added to the number of ways to choose $k$ things from $n-1$ things.

Proof

If $k > n$ then $\binom{n}{k} = 0 = \binom{n - 1}{k - 1} + \binom{n - 1}{k}$ and so the result is trivial. So assume $k \leq n$. Then

\begin{eqnarray*}\binom{n-1}{k-1}+\binom{n-1}{k}&=&\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!}\\ &=&(n-1)!\left(\frac{k}{k!(n-k)!}+\frac{n-k}{k!(n-k)!}\right)\\ &=&(n-1)!\cdot \frac{n}{k!(n-k)!}\\ &=&\frac{n!}{k!(n-k)!}\\ &=&\binom{n}{k}. \qquad\qquad\square\end{eqnarray*}

Alternate Proofs

Here, we prove this using committee forming.

Consider picking one fixed object out of $n$ objects. Then, we can choose $k$ objects including that one in $\binom{n-1}{k-1}$ ways.

Because our final group of objects either contains the specified one or doesn't, we can choose the group in $\binom{n-1}{k-1}+\binom{n-1}{k}$ ways.

But we already know they can be picked in $\binom{n}{k}$ ways, so

\[{n \choose k}={n-1\choose k-1}+{n-1\choose k}\]


Also, we can look at Pascal's Triangle to see why this is. If we were to extend Pascal's Triangle to row n, we would see the term $\binom{n}{k}$. Above that, we would see the terms ${n-1\choose k-1}$ and ${n-1\choose k}$. Due to the definition of Pascal's Triangle, ${n \choose k}={n-1\choose k-1}+{n-1\choose k}$.

Vandermonde's Identity

Vandermonde's Identity states that $\sum_{k=0}^r\binom mk\binom n{r-k}=\binom{m+n}r$, which can be proven combinatorially by noting that any combination of $r$ objects from a group of $m+n$ objects must have some $0\le k\le r$ objects from group $m$ and the remaining from group $n$.

Video Proof

https://www.youtube.com/watch?v=u1fktz9U9ig

Combinatorial Proof

Think of the right hand side as picking $r$ people from $m$ men and $n$ women. Think of the left hand side as picking $k$ men from the $m$ total men and picking $r-k$ women from the $n$ total women. The left hand side and right hand side are the same, thus Vandermonde's identity must be true.

~avn

Algebraic proof

For all $x,$ \[(1+x)^m(1+x)^n = (1+x)^{m+n}\] The coefficients of $x^r$ on both sides must be the same, so using the Binomial Theorem, \[\sum_{k=0}^r \binom mk \binom n{r-k} = \binom {m+n}r.\]

Hockey-Stick Identity

For $n,r\in\mathbb{N}, n>r,\sum^n_{i=r}{i\choose r}={n+1\choose r+1}$.

[asy] int chew(int n,int r){  int res=1;  for(int i=0;i<r;++i){   res=quotient(res*(n-i),i+1);   }  return res;  } for(int n=0;n<9;++n){  for(int i=0;i<=n;++i){   if((i==2 && n<8)||(i==3 && n==8)){    if(n==8){label(string(chew(n,i)),(11+n/2-i,-n),p=red+2.5);}    else{label(string(chew(n,i)),(11+n/2-i,-n),p=blue+2);}    }   else{    label(string(chew(n,i)),(11+n/2-i,-n));    }   }  } [/asy]

This identity is known as the hockey-stick identity because, on Pascal's triangle, when the addends represented in the summation and the sum itself is highlighted, a hockey-stick shape is revealed. We can also flip the hockey stick because pascal's triangle is symmetrical.


Proof

Inductive Proof

This identity can be proven by induction on $n$.

Base Case Let $n=r$.

$\sum^n_{i=r}{i\choose r}=\sum^r_{i=r}{i\choose r}={r\choose r}=1={r+1\choose r+1}$.

Inductive Step Suppose, for some $k\in\mathbb{N}, k>r$, $\sum^k_{i=r}{i\choose r}={k+1\choose r+1}$. Then $\sum^{k+1}_{i=r}{i\choose r}=\left(\sum^k_{i=r}{i\choose r}\right)+{k+1\choose r}={k+1\choose r+1}+{k+1\choose r}={k+2\choose r+1}$.

Algebraic Proof

It can also be proven algebraically with Pascal's Identity, ${n \choose k}={n-1\choose k-1}+{n-1\choose k}$. Note that

${r \choose r}+{r+1 \choose r}+{r+2 \choose r}+\cdots+{r+a \choose r}$ $={r+1 \choose r+1}+{r+1 \choose r}+{r+2 \choose r}+\cdots+{r+a \choose r}$ $={r+2 \choose r+1}+{r+2 \choose r}+\cdots+{r+a \choose r}=\cdots={r+a \choose r+1}+{r+a \choose r}={r+a+1 \choose r+1}$, which is equivalent to the desired result.

Combinatorial Proof 1

Imagine that we are distributing $n$ indistinguishable candies to $k$ distinguishable children. By a direct application of Balls and Urns, there are ${n+k-1\choose k-1}$ ways to do this. Alternatively, we can first give $0\le i\le n$ candies to the oldest child so that we are essentially giving $n-i$ candies to $k-1$ kids and again, with Balls and Urns, ${n+k-1\choose k-1}=\sum_{i=0}^n{n+k-2-i\choose k-2}$, which simplifies to the desired result.

Combinatorial Proof 2

We can form a committee of size $k+1$ from a group of $n+1$ people in ${{n+1}\choose{k+1}}$ ways. Now we hand out the numbers $1,2,3,\dots,n-k+1$ to $n-k+1$ of the $n+1$ people. We can divide this into $n-k+1$ disjoint cases. In general, in case $x$, $1\le x\le n-k+1$, person $x$ is on the committee and persons $1,2,3,\dots, x-1$ are not on the committee. This can be done in $\binom{n-x+1}{k}$ ways. Now we can sum the values of these $n-k+1$ disjoint cases, getting \[{{n+1}\choose {k+1}} ={{n}\choose{k}}+{{n-1}\choose{k}}+{{n-2}\choose{k}}+\hdots+{{k+1}\choose{k}}+{{k}\choose{k}}.\]


Algebraic Proof 2

Apply the finite geometric series formula to $(1+x)$: \[1+(1+x)+(1+x)^2+...+(1+x)^n=\frac{(1+x)^{n+1}-1}{(1+x)-1}\] Then expand with the Binomial Theorem and simplify: \[1+(1+x)+(1+2x+x^2)+...+ \left (\binom{n}{0}+\binom{n}{1}x+\binom{n}{2}x^2+...+\binom{n}{n-1}x^{n-1}+\binom{n}{n}x^n \right )=\binom{n+1}{1}+\binom{n+1}{2}x+...+\binom{n+1}{n+1}x^n\] Finally, equate coefficients of $x^m$ on both sides: \[\binom{0}{m}+\binom{1}{m}+\binom{2}{m}+...+\binom{n}{m}=\binom{n+1}{m+1}\] Since for $i<m$, $\binom{i}{m}=0$, this simplifies to the hockey stick identity.

Algebraic Proof 3

Consider the number of solutions to the equation $a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ ≤ N where each $a_i$ is a non-negative integer for 1≤i≤r.

METHOD 1 We know since all numbers on LHS are non-negative therefore 0≤N and N is a integer.

Therfore, $a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ = 0,1,2......N. Consider each case seperately.

$a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ =0 by Stars-and-bars the equation has $\binom {0+r-1}{r-1}$ solutions.

$a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ =1 by Stars-and-bars the equation has $\binom {1+r-1}{r-1}$ solutions.

$a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ =2 by Stars-and-bars the equation has $\binom {2+r-1}{r-1}$ solutions.

........... $a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ =N by Stars-and-bars the equation has $\binom {N+r-1}{r-1}$ solutions.

Hence, the equation has $\binom {r-1}{r-1}$+ $\binom {r}{r-1}$+ $\binom {r+1}{r-1}$+.... $\binom {N+r-1}{r-1}$= $\sum^k_{i=r-1}{i\choose r-1}$ (where k=N+r-1) SOLUTIONS.

METHOD 2 Since, $a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ ≤ N Therefore we may say $a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ = N -m where m is another non-negative integer. 0 ≤$a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ ⇒ 0≤ N-m ⇒ m≤ N So, we need not count this as an extra restriction.

Now, $a_1$+$a_2$+$a_3$+$a_4$+$a_5$+$a_6$+.......+$a_r$ +m = N. Again by Stars-and-bars this has $\binom {N+r}{r}$ solutions.

Therefore, the equation has $\binom {N+r}{r}$ = $\binom {k+1}{r}$ solutions(As N+r-1 =k).

Since, both methods yeild the same answer ⇒ $\sum^k_{i=r-1}{i\choose r-1}$ = $\binom {k+1}{r}$. Taking r-1= p redirects to the honeystick identity.

~SANSGANKRSNGUPTA

Another Identity

\[\sum_{i=0}^k \binom{k}{i}^2=\binom{2k}{k}\]

Hat Proof

We have $2k$ different hats. We split them into two groups, each with k hats: then we choose $i$ hats from the first group and $k-i$ hats from the second group. This may be done in $\binom{k}{i}^2$ ways. Evidently, to generate all possible choices of $k$ hats from the $2k$ hats, we must choose $i=0,1,\cdots,k$ hats from the first $k$ and the remaining $k-i$ hats from the second $k$; the sum over all such $i$ is the number of ways of choosing $k$ hats from $2k$. Therefore $\sum_{i=0}^k \binom{k}{i}^2=\binom{2k}{k}$, as desired.

Proof 2

This is a special case of Vandermonde's identity, in which we set $m=n=r$.

Even Odd Identity

\[\sum_{k=0}^m (-1)^k \binom{n}{k}= (-1)^m \binom{n-1}{m}\]

Examples

See also