Difference between revisions of "2023 AMC 8 Problems/Problem 13"

(Video Solution by Magic Square)
(14 intermediate revisions by 9 users not shown)
Line 44: Line 44:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
~apex304, SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat, MRENTHUSIASM
 
~apex304, SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat, MRENTHUSIASM
 +
 +
==Video Solution by Math-X (Let's first Understand the question)==
 +
https://youtu.be/Ku_c1YHnLt0?si=YRjrl2U0waLkNWqm&t=2151  ~MATH-X
 +
==Video Solution (Solve under 60 seconds!!!)==
 +
https://youtu.be/6O5UXi-Jwv4?si=KvvABit-3-ZtX7Qa&t=588
 +
 +
~hsnacademy
 +
 +
==Video Solution (CREATIVE THINKING!!!)==
 +
https://youtu.be/rPRis7sGroI
 +
 +
~Education, the Study of Everything
  
 
==Video Solution (Animated)==
 
==Video Solution (Animated)==
Line 53: Line 65:
 
https://youtu.be/-N46BeEKaCQ?t=4439
 
https://youtu.be/-N46BeEKaCQ?t=4439
 
==Video Solution by Interstigation==
 
==Video Solution by Interstigation==
https://youtu.be/1bA7fD7Lg54?t=976
+
https://youtu.be/DBqko2xATxs&t=1299
 +
 
 +
==Video Solution by harungurcan==
 +
https://www.youtube.com/watch?v=VqN7c5U5o98&t=16s
 +
 
 +
~harungurcan
 +
 
 +
==Video Solution by Dr. David==
 +
https://youtu.be/A7NZlithQ44
  
 
==See Also==  
 
==See Also==  
 
{{AMC8 box|year=2023|num-b=12|num-a=14}}
 
{{AMC8 box|year=2023|num-b=12|num-a=14}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:09, 27 October 2024

Problem

Along the route of a bicycle race, $7$ water stations are evenly spaced between the start and finish lines, as shown in the figure below. There are also $2$ repair stations evenly spaced between the start and finish lines. The $3$rd water station is located $2$ miles after the $1$st repair station. How long is the race in miles? [asy] // Credits given to Themathguyd‎ and Kante314 usepackage("mathptmx"); size(10cm); filldraw((11,4.5)--(171,4.5)--(171,17.5)--(11,17.5)--cycle,mediumgray*0.4 + lightgray*0.6); draw((11,11)--(171,11),linetype("2 2")+white+linewidth(1.2)); draw((0,0)--(11,0)--(11,22)--(0,22)--cycle); draw((171,0)--(182,0)--(182,22)--(171,22)--cycle);  draw((31,4.5)--(31,0)); draw((51,4.5)--(51,0)); draw((151,4.5)--(151,0));  label(scale(.85)*rotate(45)*"Water 1", (23,-13.5)); label(scale(.85)*rotate(45)*"Water 2", (43,-13.5)); label(scale(.85)*rotate(45)*"Water 7", (143,-13.5));  filldraw(circle((103,-13.5),.2)); filldraw(circle((98,-13.5),.2)); filldraw(circle((93,-13.5),.2)); filldraw(circle((88,-13.5),.2)); filldraw(circle((83,-13.5),.2));  label(scale(.85)*rotate(90)*"Start", (5.5,11)); label(scale(.85)*rotate(270)*"Finish", (176.5,11)); [/asy] $\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 96$

Solution

Suppose that the race is $d$ miles long. The water stations are located at \[\frac{d}{8}, \frac{2d}{8}, \ldots, \frac{7d}{8}\] miles from the start, and the repair stations are located at \[\frac{d}{3}, \frac{2d}{3}\] miles from the start.

We are given that $\frac{3d}{8}=\frac{d}{3}+2,$ from which \begin{align*} \frac{9d}{24}&=\frac{8d}{24}+2 \\ \frac{d}{24}&=2 \\ d&=\boxed{\textbf{(D)}\ 48}. \end{align*} ~apex304, SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat, MRENTHUSIASM

Video Solution by Math-X (Let's first Understand the question)

https://youtu.be/Ku_c1YHnLt0?si=YRjrl2U0waLkNWqm&t=2151 ~MATH-X

Video Solution (Solve under 60 seconds!!!)

https://youtu.be/6O5UXi-Jwv4?si=KvvABit-3-ZtX7Qa&t=588

~hsnacademy

Video Solution (CREATIVE THINKING!!!)

https://youtu.be/rPRis7sGroI

~Education, the Study of Everything

Video Solution (Animated)

https://youtu.be/NivfOThj1No

~Star League (https://starleague.us)

Video Solution by Magic Square

https://youtu.be/-N46BeEKaCQ?t=4439

Video Solution by Interstigation

https://youtu.be/DBqko2xATxs&t=1299

Video Solution by harungurcan

https://www.youtube.com/watch?v=VqN7c5U5o98&t=16s

~harungurcan

Video Solution by Dr. David

https://youtu.be/A7NZlithQ44

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png