Difference between revisions of "2002 AMC 12P Problems/Problem 1"

(Solution 1)
(Solution 1)
 
(7 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
{{duplicate|[[2002 AMC 12P Problems|2002 AMC 12P #1]] and [[2002 AMC 10P Problems|2002 AMC 10P #4]]}}
 +
 
== Problem ==
 
== Problem ==
 
Which of the following numbers is a perfect square?
 
Which of the following numbers is a perfect square?
Line 25: Line 27:
 
<math>\textbf{(E)}</math> because <math>5^5</math> is an odd power.
 
<math>\textbf{(E)}</math> because <math>5^5</math> is an odd power.
  
This leaves option <math>\textbf{(C)},</math> in which <math>4^5=2^2^5=2^10</math>, and since <math>10,</math> <math>4,</math> and <math>6</math> are all even, it is a perfect square. Thus, our answer is <math>\boxed{\textbf{(C) } 4^4 5^4 6^6}</math>.
+
This leaves option <math>\textbf{(C)},</math> in which <math>4^5=(2^{2})^{5}=2^{10}</math>, and since <math>10, 4,</math> and <math>6</math> are all even, <math>\textbf{(C)}</math> is a perfect square. Thus, our answer is <math>\boxed{\textbf{(C) } 4^5 5^4 6^6}.</math>
  
 
== See also ==
 
== See also ==
 +
{{AMC10 box|year=2002|ab=P|num-b=3|num-a=5}}
 
{{AMC12 box|year=2002|ab=P|before=First question|num-a=2}}
 
{{AMC12 box|year=2002|ab=P|before=First question|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 19:37, 28 October 2024

The following problem is from both the 2002 AMC 12P #1 and 2002 AMC 10P #4, so both problems redirect to this page.

Problem

Which of the following numbers is a perfect square?

$\text{(A) }4^4 5^5 6^6 \qquad \text{(B) }4^4 5^6 6^5 \qquad \text{(C) }4^5 5^4 6^6 \qquad \text{(D) }4^6 5^4 6^5 \qquad \text{(E) }4^6 5^5 6^4$

Solution 1

For a positive integer to be a perfect square, all the primes in its prime factorization must have an even exponent. With a quick glance at the answer choices, we can eliminate options

$\textbf{(A)}$ because $5^5$ is an odd power

$\textbf{(B)}$ because $6^5 = 2^5 \cdot 3^5$ and $3^5$ is an odd power

$\textbf{(D)}$ because $6^5 = 2^5 \cdot 3^5$ and $3^5$ is an odd power, and

$\textbf{(E)}$ because $5^5$ is an odd power.

This leaves option $\textbf{(C)},$ in which $4^5=(2^{2})^{5}=2^{10}$, and since $10, 4,$ and $6$ are all even, $\textbf{(C)}$ is a perfect square. Thus, our answer is $\boxed{\textbf{(C) } 4^5 5^4 6^6}.$

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png