Difference between revisions of "2015 AMC 10B Problems/Problem 16"

(Solution)
(Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
<math>\textbf{(A) } \dfrac{9}{1000} \qquad\textbf{(B) } \dfrac{1}{90} \qquad\textbf{(C) } \dfrac{1}{80} \qquad\textbf{(D) } \dfrac{1}{72} \qquad\textbf{(E) } \dfrac{2}{121} </math>
 
<math>\textbf{(A) } \dfrac{9}{1000} \qquad\textbf{(B) } \dfrac{1}{90} \qquad\textbf{(C) } \dfrac{1}{80} \qquad\textbf{(D) } \dfrac{1}{72} \qquad\textbf{(E) } \dfrac{2}{121} </math>
  
==Video Soultion==
+
==Video Solution==
  
 
https://www.youtube.com/watch?v=vulB2z_PdRE&feature=youtu.be
 
https://www.youtube.com/watch?v=vulB2z_PdRE&feature=youtu.be
 
  
 
==Solution==
 
==Solution==
Line 24: Line 23:
  
 
Clearly, there are exactly <math>9</math> cases where Al's number will be a whole number multiple of Bill's and Bill's number will be a whole number multiple of Cal's. Since there are <math>10*9*8</math> possible permutations of the numbers Al, Bill, and Cal were assigned, the probability that this is true is <math>\frac9{10*9*8}=\boxed{\text{(\textbf C) }\frac1{80}}</math>
 
Clearly, there are exactly <math>9</math> cases where Al's number will be a whole number multiple of Bill's and Bill's number will be a whole number multiple of Cal's. Since there are <math>10*9*8</math> possible permutations of the numbers Al, Bill, and Cal were assigned, the probability that this is true is <math>\frac9{10*9*8}=\boxed{\text{(\textbf C) }\frac1{80}}</math>
 +
 +
-http://www.youtube.com/@OnDaTrainToMath
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2015|ab=B|num-b=15|num-a=17}}
 
{{AMC10 box|year=2015|ab=B|num-b=15|num-a=17}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 21:30, 29 October 2024

Problem

Al, Bill, and Cal will each randomly be assigned a whole number from $1$ to $10$, inclusive, with no two of them getting the same number. What is the probability that Al's number will be a whole number multiple of Bill's and Bill's number will be a whole number multiple of Cal's?

$\textbf{(A) } \dfrac{9}{1000} \qquad\textbf{(B) } \dfrac{1}{90} \qquad\textbf{(C) } \dfrac{1}{80} \qquad\textbf{(D) } \dfrac{1}{72} \qquad\textbf{(E) } \dfrac{2}{121}$

Video Solution

https://www.youtube.com/watch?v=vulB2z_PdRE&feature=youtu.be

Solution

We can solve this problem with a brute force approach.

  • If Cal's number is $1$:
    • If Bill's number is $2$, Al's can be any of $4, 6, 8, 10$.
    • If Bill's number is $3$, Al's can be any of $6, 9$.
    • If Bill's number is $4$, Al's can be $8$.
    • If Bill's number is $5$, Al's can be $10$.
    • Otherwise, Al's number could not be a whole number multiple of Bill's.
  • If Cal's number is $2$:
    • If Bill's number is $4$, Al's can be $8$.
    • Otherwise, Al's number could not be a whole number multiple of Bill's while Bill's number is still a whole number multiple of Cal's.
  • Otherwise, Bill's number must be greater than $5$, i.e. Al's number could not be a whole number multiple of Bill's.

Clearly, there are exactly $9$ cases where Al's number will be a whole number multiple of Bill's and Bill's number will be a whole number multiple of Cal's. Since there are $10*9*8$ possible permutations of the numbers Al, Bill, and Cal were assigned, the probability that this is true is $\frac9{10*9*8}=\boxed{\text{(\textbf C) }\frac1{80}}$

-http://www.youtube.com/@OnDaTrainToMath

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png