Difference between revisions of "2016 AMC 10B Problems/Problem 24"

m (Solution 2)
m (Solution)
 
(9 intermediate revisions by 5 users not shown)
Line 5: Line 5:
 
<math>\textbf{(A)}\ 9\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 20</math>
 
<math>\textbf{(A)}\ 9\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 20</math>
  
==Solution 1==
+
==Solution==
 
The numbers are <math>10a+b, 10b+c,</math> and <math>10c+d</math>. Note that only <math>d</math> can be zero, the numbers <math>ab</math>, <math>bc</math>, and <math>cd</math> cannot start with a zero, and <math>a\le b\le c</math>.
 
The numbers are <math>10a+b, 10b+c,</math> and <math>10c+d</math>. Note that only <math>d</math> can be zero, the numbers <math>ab</math>, <math>bc</math>, and <math>cd</math> cannot start with a zero, and <math>a\le b\le c</math>.
  
 
To form the sequence, we need <math>(10c+d)-(10b+c)=(10b+c)-(10a+b)</math>. This can be rearranged as <math>10(c-2b+a)=2c-b-d</math>. Notice that since the left-hand side is a multiple of <math>10</math>, the right-hand side can only be <math>0</math> or <math>10</math>. (A value of <math>-10</math> would contradict <math>a\le b\le c</math>.) Therefore we have two cases: <math>a+c-2b=1</math> and <math>a+c-2b=0</math>.
 
To form the sequence, we need <math>(10c+d)-(10b+c)=(10b+c)-(10a+b)</math>. This can be rearranged as <math>10(c-2b+a)=2c-b-d</math>. Notice that since the left-hand side is a multiple of <math>10</math>, the right-hand side can only be <math>0</math> or <math>10</math>. (A value of <math>-10</math> would contradict <math>a\le b\le c</math>.) Therefore we have two cases: <math>a+c-2b=1</math> and <math>a+c-2b=0</math>.
  
===        Case 1===
+
'''Case 1'''
 +
 
 
If <math>c=9</math>, then <math>b+d=8,\ 2b-a=8</math>, so <math>5\le b\le 8</math>. This gives <math>2593, 4692, 6791, 8890</math>.
 
If <math>c=9</math>, then <math>b+d=8,\ 2b-a=8</math>, so <math>5\le b\le 8</math>. This gives <math>2593, 4692, 6791, 8890</math>.
 
If <math>c=8</math>, then <math>b+d=6,\ 2b-a=7</math>, so <math>4\le b\le 6</math>. This gives <math>1482, 3581, 5680</math>.
 
If <math>c=8</math>, then <math>b+d=6,\ 2b-a=7</math>, so <math>4\le b\le 6</math>. This gives <math>1482, 3581, 5680</math>.
Line 19: Line 20:
  
  
===Case 2===
+
'''Case 2'''
This means that the digits themselves are in an arithmetic sequence. This gives us <math>9</math> answers,
+
 
 +
This means that the digits themselves are in an arithmetic sequence, as <math>a+c-2b=0 \Rightarrow a-b=b-c.</math> This gives us <math>9</math> answers,
 
<cmath>1234, 1357, 2345, 2468, 3456, 3579, 4567, 5678, 6789.</cmath>
 
<cmath>1234, 1357, 2345, 2468, 3456, 3579, 4567, 5678, 6789.</cmath>
 
Adding the two cases together, we find the answer to be <math>8+9=</math> <math>\boxed{\textbf{(D) }17}</math>.
 
Adding the two cases together, we find the answer to be <math>8+9=</math> <math>\boxed{\textbf{(D) }17}</math>.
  
==Solution 2 (Brute Force)==
+
==Solution 2 (Brute Force, when you have lots of time)==
 
Looking at the answer options, all the numbers are pretty small so it is easy to make a list.  
 
Looking at the answer options, all the numbers are pretty small so it is easy to make a list.  
  
Line 69: Line 71:
 
Counting all the cases we get our answer of <math>17</math> which is <math>\boxed{D}</math>
 
Counting all the cases we get our answer of <math>17</math> which is <math>\boxed{D}</math>
 
-srisainandan6
 
-srisainandan6
 +
 +
==Solution 3==
 +
Let <math>x</math> be the difference between the numbers <math>ab</math>, <math>bc</math>, and <math>cd</math>. We then have
 +
<cmath>10a + b = 10b + c - x</cmath> and
 +
<cmath>10b + c = 10c + d - x.</cmath>
 +
 +
Subtracting the second equation from the first and then simplifying, we are left with:
 +
<cmath>10a + 8c + d = 19b.</cmath>
 +
 +
Notice that <math>b > c</math>. Because the values of <math>a</math> and <math>d</math> are irrelevant compared to the other numbers, we can just find pairs of <math>(b, c)</math> such that <math>a > 0</math>. Trying out each value of <math>b</math> from <math>2</math> to <math>9</math> and summing the number of pairs yields <math>1 + 2 + 4 + 4 + 3 + 2 + 1 + 0 = \boxed{\textbf{(D) }17}</math>
 +
 +
- cappucher
 +
 +
==Video Solution==
 +
https://www.youtube.com/watch?v=UhPxvZ6V4Zs
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2016|ab=B|num-b=23|num-a=25}}
 
{{AMC10 box|year=2016|ab=B|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 01:50, 5 November 2024

Problem

How many four-digit integers $abcd$, with $a \neq 0$, have the property that the three two-digit integers $ab<bc<cd$ form an increasing arithmetic sequence? One such number is $4692$, where $a=4$, $b=6$, $c=9$, and $d=2$.

$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 15\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 20$

Solution

The numbers are $10a+b, 10b+c,$ and $10c+d$. Note that only $d$ can be zero, the numbers $ab$, $bc$, and $cd$ cannot start with a zero, and $a\le b\le c$.

To form the sequence, we need $(10c+d)-(10b+c)=(10b+c)-(10a+b)$. This can be rearranged as $10(c-2b+a)=2c-b-d$. Notice that since the left-hand side is a multiple of $10$, the right-hand side can only be $0$ or $10$. (A value of $-10$ would contradict $a\le b\le c$.) Therefore we have two cases: $a+c-2b=1$ and $a+c-2b=0$.

Case 1

If $c=9$, then $b+d=8,\ 2b-a=8$, so $5\le b\le 8$. This gives $2593, 4692, 6791, 8890$. If $c=8$, then $b+d=6,\ 2b-a=7$, so $4\le b\le 6$. This gives $1482, 3581, 5680$. If $c=7$, then $b+d=4,\ 2b-a=6$, so $b=4$, giving $2470$. There is no solution for $c=6$. Added together, this gives us $8$ answers for Case 1.


Case 2

This means that the digits themselves are in an arithmetic sequence, as $a+c-2b=0 \Rightarrow a-b=b-c.$ This gives us $9$ answers, \[1234, 1357, 2345, 2468, 3456, 3579, 4567, 5678, 6789.\] Adding the two cases together, we find the answer to be $8+9=$ $\boxed{\textbf{(D) }17}$.

Solution 2 (Brute Force, when you have lots of time)

Looking at the answer options, all the numbers are pretty small so it is easy to make a list.

$12|23|34 \rightarrow 1234$

$13|35|57 \rightarrow 1357$

$14|48|82 \rightarrow 1482$


$23|34|45 \rightarrow 2345$

$24|46|68 \rightarrow 2468$

$24|47|70 \rightarrow 2470$

$25|59|93 \rightarrow 2593$


$34|45|56 \rightarrow 3456$

$35|57|79 \rightarrow 3579$

$35|58|81 \rightarrow 3581$


$45|56|67 \rightarrow 4567$

$46|69|92 \rightarrow 4692$


$56|67|78 \rightarrow 5678$

$56|68|80 \rightarrow 5680$


$67|78|89 \rightarrow 6789$

$67|79|91 \rightarrow 6791$


$88|89|90 \rightarrow 8890$

Counting all the cases we get our answer of $17$ which is $\boxed{D}$ -srisainandan6

Solution 3

Let $x$ be the difference between the numbers $ab$, $bc$, and $cd$. We then have \[10a + b = 10b + c - x\] and \[10b + c = 10c + d - x.\]

Subtracting the second equation from the first and then simplifying, we are left with: \[10a + 8c + d = 19b.\]

Notice that $b > c$. Because the values of $a$ and $d$ are irrelevant compared to the other numbers, we can just find pairs of $(b, c)$ such that $a > 0$. Trying out each value of $b$ from $2$ to $9$ and summing the number of pairs yields $1 + 2 + 4 + 4 + 3 + 2 + 1 + 0 = \boxed{\textbf{(D) }17}$

- cappucher

Video Solution

https://www.youtube.com/watch?v=UhPxvZ6V4Zs

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png