Difference between revisions of "2024 AMC 10A Problems/Problem 15"

Line 6: Line 6:
 
==Solution==
 
==Solution==
  
 +
Let <math>M+1213=P^2</math> and <math>M+3773=Q^2</math> for some positive integers <math>P</math> and <math>Q.</math> We subtract the first equation from the second, then apply the difference of squares: <cmath>(Q+P)(Q-P)=2560.</cmath> Note that <math>Q+P</math> and <math>Q-P</math> have the same parity, and <math>Q+P>Q-P.</math>
 +
 +
We wish to maximize both <math>P</math> and <math>Q,</math> so we maximize <math>Q+P</math> and minimize <math>Q-P.</math> It follows that
 +
<cmath>\begin{align*}
 +
Q+P=1280, \
 +
Q-P=2,
 +
\end{align*}</cmath>
 +
from which <math>(P,Q)=(639,641).</math>
 +
 +
~MRENTHUSIASM
  
 
==See also==
 
==See also==
{{AMC10 box|year=2024|ab=A|num-b=2|num-a=4}}
+
{{AMC10 box|year=2024|ab=A|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:03, 8 November 2024

Problem

Let $M$ be the greatest integer such that both $M+1213$ and $M+3773$ are perfect squares. What is the units digit of $M$?

$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }8$

Solution

Let $M+1213=P^2$ and $M+3773=Q^2$ for some positive integers $P$ and $Q.$ We subtract the first equation from the second, then apply the difference of squares: \[(Q+P)(Q-P)=2560.\] Note that $Q+P$ and $Q-P$ have the same parity, and $Q+P>Q-P.$

We wish to maximize both $P$ and $Q,$ so we maximize $Q+P$ and minimize $Q-P.$ It follows that \begin{align*} Q+P=1280, \\ Q-P=2, \end{align*} from which $(P,Q)=(639,641).$

~MRENTHUSIASM

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png