Difference between revisions of "2006 AMC 8 Problems/Problem 24"
Pi is 3.14 (talk | contribs) (→Solution) |
|||
(41 intermediate revisions by 16 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | In the multiplication problem below <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math> | + | In the multiplication problem below <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math> are different digits. What is <math>A+B</math>? |
<cmath> | <cmath> | ||
Line 7: | Line 7: | ||
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 9 </math> | <math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 9 </math> | ||
− | ==Video | + | ==Video Solution by OmegaLearn== |
https://youtu.be/7an5wU9Q5hk?t=3080 | https://youtu.be/7an5wU9Q5hk?t=3080 | ||
− | ==Solution== | + | ==Video Solution== |
+ | https://www.youtube.com/watch?v=dQw4w9WgXcQ | ||
+ | |||
+ | https://www.youtube.com/watch?v=Y4DXkhYthhs ~David | ||
+ | |||
+ | ==Video Solution by WhyMath== | ||
+ | https://youtu.be/IC_2SxI821c | ||
+ | |||
+ | ==Solution 1== | ||
<math>CDCD = CD \cdot 101</math>, so <math>ABA = 101</math>. Therefore, <math>A = 1</math> and <math>B = 0</math>, so <math>A+B=1+0=\boxed{\textbf{(A)}\ 1}</math>. | <math>CDCD = CD \cdot 101</math>, so <math>ABA = 101</math>. Therefore, <math>A = 1</math> and <math>B = 0</math>, so <math>A+B=1+0=\boxed{\textbf{(A)}\ 1}</math>. |
Revision as of 17:11, 8 November 2024
Contents
[hide]Problem
In the multiplication problem below , , , are different digits. What is ?
Video Solution by OmegaLearn
https://youtu.be/7an5wU9Q5hk?t=3080
Video Solution
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://www.youtube.com/watch?v=Y4DXkhYthhs ~David
Video Solution by WhyMath
Solution 1
, so . Therefore, and , so .
See Also
2006 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.