Difference between revisions of "2006 AMC 8 Problems/Problem 24"

(Solution 3)
(One intermediate revision by one other user not shown)
Line 14: Line 14:
  
 
https://www.youtube.com/watch?v=Y4DXkhYthhs  ~David
 
https://www.youtube.com/watch?v=Y4DXkhYthhs  ~David
 +
 +
==Video Solution by WhyMath==
 +
https://youtu.be/IC_2SxI821c
  
 
==Solution 1==
 
==Solution 1==
  
 
<math>CDCD = CD \cdot 101</math>, so <math>ABA = 101</math>. Therefore, <math>A = 1</math> and <math>B = 0</math>, so <math>A+B=1+0=\boxed{\textbf{(A)}\ 1}</math>.
 
<math>CDCD = CD \cdot 101</math>, so <math>ABA = 101</math>. Therefore, <math>A = 1</math> and <math>B = 0</math>, so <math>A+B=1+0=\boxed{\textbf{(A)}\ 1}</math>.
 
==Solution 4==
 
We know that <math>A</math> is 1 because after you multiply the first column <math>A</math> and <math>D</math> you get <math>D</math>. Noticing that the value of <math>CD</math> does not matter as long it is a <math>2</math> digit number, let's give the value of the <math>2</math> digit number <math>CD</math> <math>10</math>. After doing some multiplication using the traditional method, our product is <math>1B10</math>. We know that our end product has to be <math>CDCD</math>, so since our value of <math>CD</math> is 10 our product should be <math>1010</math>. Therefore, <math>B</math> is 0 because <math>B</math> is in the spot of <math>0</math>. We are not done as the problem is asking for the value of <math>A+B</math> which is just <math>\boxed{\textbf{(A)}\ 1}</math>.
 
 
- LearnForEver
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2006|n=II|num-b=23|num-a=25}}
 
{{AMC8 box|year=2006|n=II|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:11, 8 November 2024

Problem

In the multiplication problem below $A$, $B$, $C$, $D$ are different digits. What is $A+B$?

\[\begin{array}{cccc}& A & B & A\\ \times & & C & D\\ \hline C & D & C & D\\ \end{array}\]

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 9$

Video Solution by OmegaLearn

https://youtu.be/7an5wU9Q5hk?t=3080

Video Solution

https://www.youtube.com/watch?v=dQw4w9WgXcQ

https://www.youtube.com/watch?v=Y4DXkhYthhs ~David

Video Solution by WhyMath

https://youtu.be/IC_2SxI821c

Solution 1

$CDCD = CD \cdot 101$, so $ABA = 101$. Therefore, $A = 1$ and $B = 0$, so $A+B=1+0=\boxed{\textbf{(A)}\ 1}$.

See Also

2006 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png