Difference between revisions of "2024 AMC 10A Problems/Problem 1"

(A sixth solution to a very simple problem. imo, this is the quickest way to solve, so it is worth putting it up)
(Solution 7 (cubes))
Line 49: Line 49:
  
 
~laythe_enjoyer211
 
~laythe_enjoyer211
 +
 +
==Solution 7 (cubes)==
 +
 +
Let <math>x=100</math>.
 +
 +
Then, we have
 +
\begin{align*}
 +
101\cdot 9901=(x+1)\cdot (x^2-x+1)=x^3+1 \
 +
99\cdot 10101=(x-1)\cdot (x^2+x+1)=x^3-1
 +
\end{align*}
 +
 +
Then, the answer can be rewritten as <math>(x^3+1)-(x^3-1)=\boxed{\textbf{(A) }2}</math>
 +
 +
~erics118
  
 
== Video Solution by Pi Academy ==
 
== Video Solution by Pi Academy ==

Revision as of 15:16, 9 November 2024

The following problem is from both the 2024 AMC 10A #1 and 2024 AMC 12A #1, so both problems redirect to this page.

Problem

What is the value of \[9901\cdot101-99\cdot10101?\]

$\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020$

Solution 1 (Direct Computation)

The likely fastest method will be direct computation. $9901\cdot101$ evaluates to $1000001$ and $99\cdot10101$ evaluates to $999999$. The difference is $\boxed{\textbf{(A) }2}.$

Solution by juwushu.

Solution 2 (Distributive Property)

We have \begin{align*} 9901\cdot101-99\cdot10101 &= (10000-99)\cdot101-99\cdot(10000+101) \\ &= 10000\cdot101-99\cdot101-99\cdot10000-99\cdot101 \\ &= (10000\cdot101-99\cdot10000)-2\cdot(99\cdot101) \\ &= 2\cdot10000-2\cdot9999 \\ &= \boxed{\textbf{(A) }2}. \end{align*} ~MRENTHUSIASM

Solution 3 (Solution 1 but Distributive)

Note that $9901\cdot101=9901\cdot100+9901=9901=990100+9901=1000001$ and $99\cdot10101=100\cdot10101-10101=1010100-10101=999999$, therefore the answer is $1000001-999999=\boxed{\textbf{(A) }2}$.

~Tacos_are_yummy_1

Solution 4 (Modular arithmetic, fast)

Evaluating the given expression $\pmod{10}$ yields $1-9\equiv 2 \pmod{10}$, so the answer is either (A) or (D). Evaluating $\pmod{101}$ yields $0-99\equiv 2\pmod{101}$. Because answer (D) is $202=2\cdot 101$, that cannot be the answer, so we choose choice $\boxed{\textbf{(A) }2}$.

Solution 5 (Process of Elimination) (Not recommended)

We simply look at the units digit of the problem we have (or take mod $10$) \[9901\cdot101-99\cdot10101 \equiv 1\cdot1 - 9\cdot1 = 2 \mod{10}.\] Since the only answer with 2 in the units digit is $\textbf{(A)}$ or $\textbf{(D)}$ We can then continue if you are desperate to use guess and check or a actually valid method to find the answer is $\boxed{\textbf{(A) }2}$.

~mathkiddus

Solution 6 (Faster Distribution)

Observe that $9901=9900+1=99\cdot100+1$ and $10101=10100+1=101\cdot100+1$ \begin{align*} \Rightarrow9901\cdot101-99\cdot10101 & = ((9900\cdot101)+(1\cdot101))-((99\cdot10100)+(99\cdot1)) \\ &=(99\cdot100\cdot101)+101-(99\cdot100\cdot101)-99 \\ &=101-99 \\ &=\boxed{\textbf{(A) }2}. \end{align*}

~laythe_enjoyer211

Solution 7 (cubes)

Let $x=100$.

Then, we have 1019901=(x+1)(x2x+1)=x3+19910101=(x1)(x2+x+1)=x31

Then, the answer can be rewritten as $(x^3+1)-(x^3-1)=\boxed{\textbf{(A) }2}$

~erics118

Video Solution by Pi Academy

https://youtu.be/GPoTfGAf8bc?si=JYDhLVzfHUbXa3DW


Video Solution

https://youtu.be/Z76bafQsqTc

~Thesmartgreekmathdude

Video Solution 1 by Power Solve

https://www.youtube.com/watch?v=j-37jvqzhrg

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png