Difference between revisions of "2024 AMC 10B Problems/Problem 23"

(Just added another solution to the page.)
(Solution 4)
Line 33: Line 33:
 
==Solution 4==
 
==Solution 4==
  
Remember that for any <math> n>=0 </math>, <cmath> \frac{F_{2n}}{F_{n}} = L_{n} </cmath>
+
Remember that for any <math> n\ge0 </math>, <cmath> \frac{F_{2n}}{F_{n}} = L_{n} </cmath>
  
 
Therefore, the problem can be expressed as the sum of the first 10 Lucas numbers, starting at 1,
 
Therefore, the problem can be expressed as the sum of the first 10 Lucas numbers, starting at 1,

Revision as of 07:36, 14 November 2024

The following problem is from both the 2024 AMC 10B #23 and 2024 AMC 12B #18, so both problems redirect to this page.

Problem

The Fibonacci numbers are defined by $F_1 = 1, F_2 = 1,$ and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 3.$ What is \[{\frac{F_2}{F_1}} + {\frac{F_4}{F_2}} + {\frac{F_6}{F_3}} + ... + {\frac{F_{20}}{F_{10}}}?\] $\textbf{(A) } 318 \qquad\textbf{(B) } 319 \qquad\textbf{(C) } 320 \qquad\textbf{(D) } 321 \qquad\textbf{(E) } 322$

Solution 1

The first $20$ terms $F_n = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765$

so the answer is $1 +  3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 =  \boxed{(B) 319}$.

~luckuso

Solution 2

Plug in a few numbers to see if there is a pattern. List out a few Fibonacci numbers, and then try them on the equation. You'll find that ${\frac{F_2}{F_1}} = {\frac{1}{1}} = 1, {\frac{F_4}{F_2}} = {\frac{3}{1}} = 3, {\frac{F_6}{F_3}} = {\frac{8}{2}} = 4,$ and ${\frac{F_8}{F_4}} = {\frac{21}{3}} = 7.$ The pattern is that then ten fractions are in their own Fibonacci sequence with the starting two terms being $1$ and $3$, which can be written as $G_1 = 1, G_2 = 3, G_n = G_{n-1} + G_{n-2}$ for $n \geq 3.$ The problem is asking for the sum of the ten terms $G_1 + G_2 + G_3 + ... + G_{10}$, and you arrive at the solution $\boxed{\textbf{(B) }319}.$

~Cattycute

Solution 3

Define new sequence \[G_n = \frac{F_{2n}}{F_{n}} = \frac{A^{2n} - B^{2n}}{A^{n} - B^{n}} =A^n+B^n\]

A= $\frac{1+\sqrt{5}}{2}$ and B = $\frac{1-\sqrt{5}}{2}$

Per characteristic equation, $G_n$ itself is also Fibonacci type sequence with starting item $G_{1}=1 , G_{2}=3$

then we can calculate the first 10 items using $G_{n}  =G_{n-1}  + G_{n-2}$

so the answer is $1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 =  \boxed{(B) 319}$.

~luckuso

Solution 4

Remember that for any $n\ge0$, \[\frac{F_{2n}}{F_{n}} = L_{n}\]

Therefore, the problem can be expressed as the sum of the first 10 Lucas numbers, starting at 1,

making the answer $1 + 3 + 4 + 7 + 11 + 18 + 29 + 47 + 76 + 123 = \boxed{(B) 319}$.

~Apollo08 (first solution)

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png