Difference between revisions of "2024 AMC 10B Problems/Problem 10"

(Solution 3)
(One intermediate revision by one other user not shown)
Line 19: Line 19:
  
 
==Solution 3 (Techniques)==
 
==Solution 3 (Techniques)==
We assert that <math>ABCD</math> is a square of side length <math>6</math>. Notice that <math>\triangle AFE\sim\triangle CFB</math> with a scale factor of 2. Since the area of <math>\triangle ABC</math> is <math>18 \implies</math> the area of <math>\triangle CFB</math> is <math>12</math>, so the area of <math>\triangle AFE</math> is <math>3</math>. Thus the area of <math>CDEF</math> is <math>18-3=15</math>, and we conclude that the answer is <math>\frac{15}{12}\implies\boxed{\text{(A) }5:4}</math>
+
We assert that <math>ABCD</math> is a square of side length <math>6</math>. Notice that <math>\triangle AFE\sim\triangle CFB</math> with a scale factor of <math>2</math>. Since the area of <math>\triangle ABC</math> is <math>18 \implies</math> the area of <math>\triangle CFB</math> is <math>12</math>, so the area of <math>\triangle AFE</math> is <math>3</math>. Thus the area of <math>CDEF</math> is <math>18-3=15</math>, and we conclude that the answer is <math>\frac{15}{12}\implies\boxed{\text{(A) }5:4}</math>
 +
 
 +
==Solution 4==
 +
Let <math>ABCE</math> be a square with side length <math>1</math>, to assist with calculations. We can put this on the coordinate plane with the points <math>D = (0,0)</math>, <math>C = (1, 0)</math>, <math>B = (1, 1)</math>, and <math>A = (0, 1)</math>. We have <math>E = (0, 0.5)</math>. Therefore, the line <math>EB</math> has slope <math>0.5</math> and y-intercept <math>0.5</math>. The equation of the line is then <math>y = 0.5x + 0.5</math>. The equation of line <math>AC</math> is <math>y = -x + 1</math>. The intersection is when the lines are equal to each other, so we solve the equation. <math>0.5x + 0.5 = -x + 1</math>, so <math>x = \frac{1}{3}</math>. Therefore, plugging it into the equation, we get <math>y= \frac{2}{3}</math>. Using the shoelace theorem, we get the area of <math>CDEF</math> to be <math>\frac{5}{12}</math> and the area of <math>CFB</math> to be <math>\frac{1}{3}</math>, so our ratio is <math>\frac{\frac{5}{12}}{\frac{1}{3}} = \boxed{(A) 5:4}</math>
  
 
==Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)==
 
==Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)==

Revision as of 12:36, 15 November 2024

Problem

Quadrilateral $ABCD$ is a parallelogram, and $E$ is the midpoint of the side $\overline{AD}$. Let $F$ be the intersection of lines $EB$ and $AC$. What is the ratio of the area of quadrilateral $CDEF$ to the area of $\triangle CFB$?

$\textbf{(A) } 5:4 \qquad\textbf{(B) } 4:3 \qquad\textbf{(C) } 3:2 \qquad\textbf{(D) } 5:3 \qquad\textbf{(E) } 2:1$

Solution 1

Let $AB = CD$ have length $b$ and let the altitude of the parallelogram perpendicular to $\overline{AD}$ have length $h$.

The area of the parallelogram is $bh$ and the area of $\triangle ABE$ equals $\frac{(b/2)(h)}{2} = \frac{bh}{4}$. Thus, the area of quadrilateral $BCDE$ is $bh - \frac{bh}{4} = \frac{3bh}{4}$.

We have from $AA$ that $\triangle CBF \sim \triangle AEF$. Also, $CB/AE = 2$, so the length of the altitude of $\triangle CBF$ from $F$ is twice that of $\triangle AEF$. This means that the altitude of $\triangle CBF$ is $2h/3$, so the area of $\triangle CBF$ is $\frac{(b)(2h/3)}{2} = \frac{bh}{3}$.

Then, the area of quadrilateral $CDEF$ equals the area of $BCDE$ minus that of $\triangle CBF$, which is $\frac{3bh}{4} - \frac{bh}{3} = \frac{5bh}{12}$. Finally, the ratio of the area of $CDEF$ to the area of triangle $CFB$ is $\frac{\frac{5bh}{12}}{\frac{bh}{3}} = \frac{\frac{5}{12}}{\frac{1}{3}} = \frac{5}{4}$, so the answer is $\boxed{\textbf{(A) } 5:4}$.

2024 AMC 10B 10.png

Solution 2

Let $[AFE]=1$. Since $\triangle AFE\sim\triangle CFB$ with a scale factor of $2$, $[CFB]=4$. The scale factor of $2$ also means that $\dfrac{AF}{FC}=\dfrac{1}{2}$, therefore since $\triangle BCF$ and $\triangle BFA$ have the same height, $[BFA]=2$. Since $ABCD$ is a parallelogram, \[[BCA]=[DAC]\implies4+2=1+[CDEF]\implies [CDEF]=5\implies\boxed{\text{(A) }5:4}\] ~Tacos_are_yummy_1

Solution 3 (Techniques)

We assert that $ABCD$ is a square of side length $6$. Notice that $\triangle AFE\sim\triangle CFB$ with a scale factor of $2$. Since the area of $\triangle ABC$ is $18 \implies$ the area of $\triangle CFB$ is $12$, so the area of $\triangle AFE$ is $3$. Thus the area of $CDEF$ is $18-3=15$, and we conclude that the answer is $\frac{15}{12}\implies\boxed{\text{(A) }5:4}$

Solution 4

Let $ABCE$ be a square with side length $1$, to assist with calculations. We can put this on the coordinate plane with the points $D = (0,0)$, $C = (1, 0)$, $B = (1, 1)$, and $A = (0, 1)$. We have $E = (0, 0.5)$. Therefore, the line $EB$ has slope $0.5$ and y-intercept $0.5$. The equation of the line is then $y = 0.5x + 0.5$. The equation of line $AC$ is $y = -x + 1$. The intersection is when the lines are equal to each other, so we solve the equation. $0.5x + 0.5 = -x + 1$, so $x = \frac{1}{3}$. Therefore, plugging it into the equation, we get $y= \frac{2}{3}$. Using the shoelace theorem, we get the area of $CDEF$ to be $\frac{5}{12}$ and the area of $CFB$ to be $\frac{1}{3}$, so our ratio is $\frac{\frac{5}{12}}{\frac{1}{3}} = \boxed{(A) 5:4}$

Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)

https://youtu.be/QLziG_2e7CY?feature=shared

~ Pi Academy

Video Solution 2 by SpreadTheMathLove

https://www.youtube.com/watch?v=24EZaeAThuE

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png