Difference between revisions of "2024 AMC 12B Problems/Problem 15"
(→Solution (Shoelace Theorem)) |
|||
(13 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | ==Solution (Shoelace Theorem)== | + | ==Problem== |
+ | A triangle in the coordinate plane has vertices <math>A(\log_21,\log_22)</math>, <math>B(\log_23,\log_24)</math>, and <math>C(\log_27,\log_28)</math>. What is the area of <math>\triangle ABC</math>? | ||
+ | |||
+ | <math> | ||
+ | \textbf{(A) }\log_2\frac{\sqrt3}7\qquad | ||
+ | \textbf{(B) }\log_2\frac3{\sqrt7}\qquad | ||
+ | \textbf{(C) }\log_2\frac7{\sqrt3}\qquad | ||
+ | \textbf{(D) }\log_2\frac{11}{\sqrt7}\qquad | ||
+ | \textbf{(E) }\log_2\frac{11}{\sqrt3}\qquad | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ==Solution 1 (Shoelace Theorem)== | ||
We rewrite: | We rewrite: | ||
<math>A(0,1)</math> | <math>A(0,1)</math> | ||
Line 6: | Line 18: | ||
From here we setup Shoelace Theorem and obtain: | From here we setup Shoelace Theorem and obtain: | ||
− | <math>\frac{1}{2}(2(\log _{2} 3) - log _{2} 7)</math> | + | <math>\frac{1}{2}(2(\log _{2} 3) - log _{2} 7)</math>. |
− | Following log properties and simplifying gives (B). | + | |
+ | Following log properties and simplifying gives <math>\boxed{\textbf{(B) }\log_2 \frac{3}{\sqrt{7}}}</math>. | ||
+ | |||
+ | |||
+ | ~MendenhallIsBald | ||
+ | |||
+ | ==Solution 2 (Determinant)== | ||
+ | To calculate the area of a triangle formed by three points | ||
+ | <cmath> | ||
+ | \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| | ||
+ | </cmath> | ||
+ | The coordinates are:<math>A(0, 1)</math>, <math>B(\log_2 3, 2)</math>, <math>C(\log_2 7, 3)</math> | ||
+ | |||
+ | Taking a numerical value into account: | ||
+ | <cmath> | ||
+ | \text{Area} = \frac{1}{2} \left| 0 \cdot (2 - 3) + \log_2 3 \cdot (3 - 1) + \log_2 7 \cdot (1 - 2) \right| | ||
+ | </cmath> | ||
+ | Simplify: | ||
+ | <cmath> | ||
+ | = \frac{1}{2} \left| 0 + \log_2 3 \cdot 2 + \log_2 7 \cdot (-1) \right| | ||
+ | </cmath> | ||
+ | <cmath> | ||
+ | = \frac{1}{2} \left| \log_2 (3^2) - \log_2 7 \right| | ||
+ | </cmath> | ||
+ | <cmath> | ||
+ | = \frac{1}{2} \left| \log_2 \frac{9}{7} \right| | ||
+ | </cmath> | ||
+ | Thus, the area is:<math>\text{Area} = \frac{1}{2} \left| \log_2 \frac{9}{7} \right|</math> = <math>\boxed{\textbf{(B) }\log_2 \frac{3}{\sqrt{7}}}</math> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Athmyx Athmyx] | ||
+ | |||
+ | ==Video Solution 1 by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=jyupN3dT2yY&t=0s | ||
− | + | ==See also== | |
+ | {{AMC12 box|year=2024|ab=B|num-b=14|num-a=16}} | ||
+ | {{MAA Notice}} |
Revision as of 19:11, 15 November 2024
Contents
[hide]Problem
A triangle in the coordinate plane has vertices , , and . What is the area of ?
Solution 1 (Shoelace Theorem)
We rewrite: .
From here we setup Shoelace Theorem and obtain: .
Following log properties and simplifying gives .
~MendenhallIsBald
Solution 2 (Determinant)
To calculate the area of a triangle formed by three points
Taking a numerical value into account: Simplify: Thus, the area is: =
Video Solution 1 by SpreadTheMathLove
https://www.youtube.com/watch?v=jyupN3dT2yY&t=0s
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.