Difference between revisions of "2024 AMC 10B Problems/Problem 2"
Prof joker (talk | contribs) m (The solution I deleted contains a incorrect answer.) |
(→Problem) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
==Problem== | ==Problem== | ||
What is <math>10! - 7! \cdot 6!</math> | What is <math>10! - 7! \cdot 6!</math> | ||
+ | |||
+ | <math>\textbf{(A) } -120 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 600 \qquad\textbf{(E) } 720</math> | ||
+ | |||
+ | |||
+ | |||
+ | [ONLY FOR CERTAIN CHINESE TESTPAPERS] | ||
+ | |||
+ | What is <math>10! - 7! \cdot 6! - 5!</math> | ||
<math>\textbf{(A) } -120 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 600 \qquad\textbf{(E) } 720</math> | <math>\textbf{(A) } -120 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 120 \qquad\textbf{(D) } 600 \qquad\textbf{(E) } 720</math> | ||
Line 13: | Line 21: | ||
Therefore, the equation is equal to <math>720 \cdot 7! - 720 \cdot 7! = \boxed{\textbf{(B) }0}</math> | Therefore, the equation is equal to <math>720 \cdot 7! - 720 \cdot 7! = \boxed{\textbf{(B) }0}</math> | ||
− | ~Aray10 | + | [ONLY FOR CERTAIN CHINESE TESTPAPERS] |
+ | |||
+ | <math>0 - 5! = \boxed{\textbf{(A) }-120}</math> | ||
+ | |||
+ | ~Aray10 (Main Solution) and RULE101 (Modifications for certain China test papers) | ||
==Solution 2== | ==Solution 2== |
Latest revision as of 00:53, 16 November 2024
- The following problem is from both the 2024 AMC 10B #2 and 2024 AMC 12B #2, so both problems redirect to this page.
Contents
[hide]Problem
What is
[ONLY FOR CERTAIN CHINESE TESTPAPERS]
What is
Solution 1
Therefore, the equation is equal to
[ONLY FOR CERTAIN CHINESE TESTPAPERS]
~Aray10 (Main Solution) and RULE101 (Modifications for certain China test papers)
Solution 2
Factoring out gives Since , the answer is ~Tacos_are_yummy_1
Factoring also works, it just makes the expression in the parenthesis a little harder to compute.
Solution 3
Note that must be divisible by , and is the only option divisible by .
Solution 4
can be split into two parts, and . We can break the into The part makes , and the part makes , which is . We still have the 7!, and we can multiply it by . This is clearly equivalent to , so our solution is .
Solution 5
, , and . Of course, if you're fast enough, you can do . Therefore, .
-pepper2831
Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)
https://youtu.be/DIl3rLQQkQQ?feature=shared
~ Pi Academy
Video Solution 2 by SpreadTheMathLove
https://www.youtube.com/watch?v=24EZaeAThuE
Video Solution by Daily Dose of Math
~Thesmartgreekmathdude
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 1 |
Followed by Problem 3 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.