Difference between revisions of "2024 AIME I Problems/Problem 7"

(Video Solution: Cauchy's Inequality)
(Video Solution: Cauchy's Inequality)
Line 6: Line 6:
  
  
==Video Solution By MathTutorZhengFromSG
+
==Video Solution By MathTutorZhengFromSG==
  
 
https://youtu.be/usEtjiPw9Hc
 
https://youtu.be/usEtjiPw9Hc

Revision as of 06:04, 17 November 2024

Problem

Find the largest possible real part of \[(75+117i)z+\frac{96+144i}{z}\]where $z$ is a complex number with $|z|=4$.

Video Solution: Cauchy's Inequality

https://www.youtube.com/watch?v=ejmrAJ9TpvM&ab_channel=MegaMathChannel MegaMath


Video Solution By MathTutorZhengFromSG

https://youtu.be/usEtjiPw9Hc

~MathTutorZhengFromSG

Solution 1

Let $z=a+bi$ such that $a^2+b^2=4^2=16$. The expression becomes:

\[(75+117i)(a+bi)+\dfrac{96+144i}{a+bi}.\]

Call this complex number $w$. We simplify this expression.

w=(75+117i)(a+bi)+96+144ia+bi=(75a117b)+(117a+75b)i+48(2+3ia+bi)=(75a117b)+(116a+75b)i+48((2+3i)(abi)(a+bi)(abi))=(75a117b)+(116a+75b)i+48(2a+3b+(3a2b)ia2+b2)=(75a117b)+(116a+75b)i+48(2a+3b+(3a2b)i16)=(75a117b)+(116a+75b)i+3(2a+3b+(3a2b)i)=(75a117b)+(116a+75b)i+6a+9b+(9a6b)i=(81a108b)+(125a+69b)i.

We want to maximize $\text{Re}(w)=81a-108b$. We can use elementary calculus for this, but to do so, we must put the expression in terms of one variable. Recall that $a^2+b^2=16$; thus, $b=\pm\sqrt{16-a^2}$. Notice that we have a $-108b$ in the expression; to maximize the expression, we want $b$ to be negative so that $-108b$ is positive and thus contributes more to the expression. We thus let $b=-\sqrt{16-a^2}$. Let $f(a)=81a-108b$. We now know that $f(a)=81a+108\sqrt{16-a^2}$, and can proceed with normal calculus.

f(a)=81a+10816a2=27(3a+416a2)f(a)=27(3a+416a2)=27(3+4(16a2))=27(3+4(2a216a2))=27(34(a16a2))=27(34a16a2).

We want $f'(a)$ to be $0$ to find the maximum.

0=27(34a16a2)=34a16a23=4a16a24a=316a216a2=9(16a2)16a2=1449a225a2=144a2=14425a=125=2.4.

We also find that $b=-\sqrt{16-2.4^2}=-\sqrt{16-5.76}=-\sqrt{10.24}=-3.2$.

Thus, the expression we wanted to maximize becomes $81\cdot2.4-108(-3.2)=81\cdot2.4+108\cdot3.2=\boxed{540}$.

~Technodoggo

Solution 2a (Cauchy-Schwartz and vector algebra)

Simplify rectangular form as in Solution 1 until we get $\text{Re}(w)=81a-108b = 27(3a-4b)$.

By Cauchy-Schwartz, to maximize $\text{Re}(w)$, the vector $z=[a,b]$ ( $|z| =4$) is $\frac{4}{|[3,-4]|}[3,-4]$.

We don't need to bash the arithmetic next, because the unit vector $u$ that maximizes $v \cdot u$ is $u=v/|v|$, so $v \cdot u= v\cdot v = |v|^2/|v| = |v|$, which here is just $\sqrt{3^2+(-4)^2} =5$.

Combining what remains, we get answer $= 27 |z| |v|  = 27(4)(5)=\boxed{540}$.

~oinava

Solution 2b (Simple Analytic Geometry)

Simplify rectangular form as in Solution 1 until we get $\text{Re}(w)=81x-108y = 27(3x-4y)$.

We also know $|z|=4$ or $x^2+y^2=16$.

By AM-GM or Cauchy-Schwartz, b = 4a/3, so

You can also prove this like so: We want to find the line $81x-108y=k$ tangent to circle $x^2+y^2=16$, which is perpendicular to the line connecting tangent point to circle's center $(0,0)$.

Using the formula for (perpendicular) distance from a point to a line: $\frac{|ax+by+c|}{\sqrt{a^2+b^2}}=r$ we can substitute and get $\frac{|81(0)-108(0)-k|}{\sqrt{81^2+108^2}}=4$ \begin{align*} \frac{k}{27\sqrt{3^2+4^2}}&=4 \\\frac{k}{135}&=4 \\k&=\boxed{540} \end{align*}

~BH2019MV0

Solution 3

Follow Solution 1 to get $81a-108b$. We can let $a=4\cos\theta$ and $b=4\sin\theta$ as $|z|=4$, and thus we have $324\cos\theta-432\sin\theta$. Furthermore, we can ignore the negative sign in front of the second term as we are dealing with sine and cosine, so we finally wish to maximize $324\cos\theta+432\sin\theta$ for obviously positive $\cos\theta$ and $\sin\theta$.


Using the previous fact, we can use the Cauchy-Schwarz Inequality to calculate the maximum. By the inequality, we have:

$(324^2+432^2)(\cos^2\theta+\sin^2\theta)\ge(324\cos\theta+432\sin\theta)^2$

$540^2\cdot1\ge(324\cos\theta+432\sin\theta)^2$

$\boxed{540}\ge324\cos\theta+432\sin\theta$

~eevee9406

Solution 4 (Simple Quadratic Discriminant)

Similar to the solutions above, we find that $Re((75+117i)z+\frac{96+144i}{z})=81a-108b=27(3a-4b)$, where $z=a+bi$. To maximize this expression, we must maximize $3a-4b$. Let this value be $x$. Solving for $a$ yields $a=\frac{x+4b}{3}$. From the given information we also know that $a^2+b^2=16$. Substituting $a$ in terms of $x$ and $b$ gives us $\frac{x^2+8bx+16b^2}{9}+b^2=16$. Combining fractions, multiplying, and rearranging, gives $25b^2+8xb+(x^2-144)=0$. This is useful because we want the maximum value of $x$ such that this quadratic has real roots which is easy to find using the discriminant. For the roots to be real, $(8x)^2-4(25)(x^2-144) \ge 0$. Now all that is left to do is to solve this inequality. Simplifying this expression, we get $-36x^2+14400 \ge 0$ which means $x^2 \le 400$ and $x \le 20$. Therefore the maximum value of $x$ is $20$ and $27 \cdot 20 = \boxed{540}$

~vsinghminhas

Solution 5 ("Completing the Triangle")

First, recognize the relationship between the reciprocal of a complex number $z$ with its conjugate $\overline{z}$, namely:

\[\frac{1}{z} \cdot \frac{\overline{z}}{\overline{z}} = \frac{\overline{z}}{|z|^2} = \frac{\overline{z}}{16}\]

Then, let $z = 4(\cos\theta + i\sin\theta)$ and $\overline{z} = 4(\cos\theta - i\sin\theta)$.

\begin{align*} Re \left ((75+117i)z+\frac{96+144i}{z} \right) &= Re\left ( (75+117i)z + (6+9i)\overline{z}    \right ) \\                                                &= 4 \cdot Re\left ( (75+117i)(\cos\theta + i\sin\theta) + (6+9i)(\cos\theta - i\sin\theta)    \right ) \\                                                &= 4 \cdot (75\cos\theta - 117\sin\theta + 6\cos\theta + 9\sin\theta) \\                                                &= 4 \cdot (81\cos\theta - 108\sin\theta) \\                                                &= 4\cdot 27 \cdot (3\cos\theta - 4\sin\theta) \end{align*}

Now, recognizing the 3 and 4 coefficients hinting at a 3-4-5 right triangle, we "complete the triangle" by rewriting our desired answer in terms of an angle of that triangle $\phi$ where $\cos\phi = \frac{3}{5}$ and $\sin\phi = \frac{4}{5}$

\begin{align*} 4\cdot 27 \cdot(3\cos\theta - 4\sin\theta) &= 4\cdot 27 \cdot 5 \cdot (\frac{3}{5}\cos\theta - \frac{4}{5}\sin\theta) \\                                                &= 540 \cdot (\cos\phi\cos\theta - \sin\phi\sin\theta) \\                                                &= 540 \cos(\theta + \phi) \end{align*}

Since the simple trig ratio is bounded above by 1, our answer is $\boxed{540}$

~ Cocoa @ https://www.corgillogical.com/ (yes i am a corgi that does math)

Solution 6 (Cauchy-Schwarz Inequality ) (Fastest)

Follow as solution 1 would to obtain $81a + 108\sqrt{16-a^2}.$

By the Cauchy-Schwarz Inequality, we have

\[(a^2 + (\sqrt{16-a^2})^2)(81^2 + 108^2) \geq (81a + 108\sqrt{16-a^2})^2,\]

so

\[4^2 \cdot 9^2 \cdot 15^2 \geq (81a + 108\sqrt{16-a^2})^2\]

and we obtain that $81a + 108\sqrt{16-a^2} \leq 4 \cdot 9 \cdot 15 = \boxed{540}.$


- spectraldragon8

Solution 7 (Geometry)

Follow solution 2 to get that we want to find the line $81a-108b=k$ tangent to circle $a^2+b^2=16$. The line turns into $a=\frac{k}{81}+\frac{4b}{3}$ Connect the center of the circle to the tangency point and the y-intercept of the line. Let the tangency point be $A$, the y-intercept be $C$, and the center be $B$. Drop the perpendicular from $A$ to $BC$ and call it $D$. Let $AD=3x$, $DC=4x$. Then, $BD=\sqrt{AB^2-AD^2}=\sqrt{16-9x^2}$. By similar triangles, get that $\frac{BD}{AD}=\frac{AD}{DC}$, so $\frac{\sqrt{16-9x^2}}{3x}=\frac{3x}{4x}$. Solve this to get that $x=\frac{16}{15}$, so $BC=\frac{20}{3}$ and $\frac{k}{81}=\frac{20}{3}$, so $k=\boxed{540}$ ~ryanbear

Solution 8 (Euler's Formula and Trig Optimization)

Because $|z|=4$, we can let $z=4e^{i\theta}$. Then, substituting $i=e^{\frac{i\pi}{2}}$, we get that the complex number is

w=4eiθ(75+117eiπ2)+14eiθ(96+144eiπ2)=300eiθ+468ei(π2+θ)+24eiθ+36ei(π2θ)

We know that the $\text{Re}(e^{i\alpha})=\cos(\alpha)$ from Euler's formula, so applying this and then applying trig identities yields

Re(w)=300cos(θ)+468cos(π2+θ)+24cos(θ)+36cos(π2θ)=300cos(θ)468sin(θ)+24cos(θ)+36sin(θ)=324cos(θ)432sin(θ)1108Re(w)=3cos(θ)4sin(θ)

We can see that the right-hand side looks an awful lot like the sum of angles formula for cosine, but 3 and 4 don't satisfy the pythagorean identity. To make them do so, we can divide everything by $\sqrt{3^2+4^2}=5$ and set $\cos{(\alpha)}::=\frac{3}{5}$ and $\sin{(\alpha)}::=\frac{4}{5}$. Now we have that \[\dfrac{1}{540}\text{Re}(w)=\cos{(\theta+\alpha)}\] Obviously the maximum value of the right hand side is 1, so the maximum value of the real part is $\boxed{540}$.

~Mooshiros

Solution 9 (Calc semi-bash)

Let $c$ denote value of the above expression such that $\mathsf{Re} (c)$ is maximized. We write $z=4e^{i\theta}$ and multiply the second term in the expression by $\overline{z} = 4e^{-i\theta},$ turning the expression into \[4e^{i\theta}(75+117i) + \frac{(96 + 144i)\cdot 4e^{-i\theta}}{4e^{i\theta}\cdot 4e^{-i\theta}} = 300e^{i\theta} + 468ie^{i\theta} + (24+ 36i)e^{-i\theta}.\] Now, we write $e^{i\theta} = \cos\theta + i\sin\theta$. Since $\cos$ is even and $\sin$ is odd, \begin{align*} &300(\cos\theta + i\sin\theta) +468i + (24+36i)(\cos\theta -i\sin\theta) \\ \iff & \mathsf{Re}(c) = 324\cos\theta -468\sin\theta \end{align*} We want to maximize this expression, so we take its derivative and set it equal to $0$ (and quickly check the second derivative for inflection points): \begin{align*}     &\mathsf{Re}(c) = 108\left(3\cos\theta - 4\sin\theta\right)\\     \frac{d}{d\theta} &\mathsf{Re}(c) = -324\sin\theta -468\cos\theta = 0, \end{align*} so $\tan\theta = -\dfrac{468}{324} = -\dfrac{4}{3},$ which is reminiscent of a $3-4-5$ right triangle in the fourth quadrant (side lengths of $3, -4, 5$). Since $\tan\theta = -\frac{4}{3},$ we quickly see that $\sin\theta = -\dfrac{4}{5}$ and $\cos\theta = \dfrac{3}{5}.$ Therefore, \begin{align*}  \mathsf{Re}(c) &= 108\left(3\cos\theta - 4\sin\theta \right) =  108\left(\frac{9}{5} + \frac{16}{5} \right)  = 108\cdot 5 = \boxed{\textbf{(540)}} \end{align*}

-Benedict T (countmath1)

Solution 10 (Lagrange multipliers)

With $z = a + bi$ such that $a^2 + b^2 = 16,$ we have \begin{align*} (75 +117i)(a + bi) + \frac{48}{a + bi}  (2 + 3i) &= 75a + 75bi + 117ai - 117b + \frac{48}{a + bi}(2 + 3i) \\ &= 75a - 117b + (117a + 75b)i + 48 (2 + 3i) \cdot \frac{a - bi}{16} \\ &= 75a - 117b + (117a + 75b)i + 3 (2 + 3i)(a - bi) \end{align*} where we use $z^{-1} = \frac{\bar z}{|z|^2}.$ With $3 (2 + 3i)(a - bi) = 3 [2a - 2bi + 3ai + 3b] = 6a +9b +9ai-6bi,$ the expression becomes $81a-108b+ (126a + 69b)i$ and we would like to maximize $81a - 108b = 9(9a - 12b) = 27(3a - 4b)$ with $a^2 + b^2 = 16.$ With $f(a, b) = 3a - 4b$ and $g(a, b) = a^2 + b^2 = 16,$ we have \begin{align*} 3 = 2\lambda a, \quad -4 = 2\lambda b \implies -\frac{3}{4} = \frac ab \implies -3b = 4a \implies b = -\frac 43 a\end{align*} so \[a^2 + \frac{16}{9}a^2 = \frac{25}{9}a^2 = 16 \implies \frac{5}{3}a = 4 \implies a = \frac {12}5, b = -\frac{16}{5}\] and we have $3a - 4b = \frac{36}{5} + \frac{64}{5} = 20,$ so the maximum is $27 \cdot 20 = \boxed{540}.$ -centslordm

Video Solution by MOP 2024

https://www.youtube.com/watch?v=nH7dUh0HghA

~r00tsOfUnity

Video Solution by OmegaLearn.org

https://youtu.be/fErzDCu_utY

Video Solution

https://youtu.be/fC6CPlQIRB8

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png