Difference between revisions of "2024 AMC 10A Problems/Problem 23"

(Solution 6)
(Solution 6)
Line 95: Line 95:
  
 
\subsection*{Step 1: Testing positive values}
 
\subsection*{Step 1: Testing positive values}
We begin by testing three positive values, but none satisfy the equation when there is a plus sign. For example, (12,8,4) does not come close to working.
+
We begin by testing three positive values, but none satisfy the equation when there is a plus sign. For example, (12,8,4) satisfies ab+c, but does not satisfy bc+a, or ac+b.
 
From this observation, we conclude that the answer cannot be A or B.
 
From this observation, we conclude that the answer cannot be A or B.
  
Line 118: Line 118:
 
Thus, the correct answer is:
 
Thus, the correct answer is:
 
<math>ab+ba+ac= -9*-12+-12*-8+-8*-9 = \boxed{\textbf{(D) }276}.</math>
 
<math>ab+ba+ac= -9*-12+-12*-8+-8*-9 = \boxed{\textbf{(D) }276}.</math>
 
 
\end{document}
 
  
 
~pimathmonkey
 
~pimathmonkey

Revision as of 16:26, 17 November 2024

The following problem is from both the 2024 AMC 10A #23 and 2024 AMC 12A #17, so both problems redirect to this page.

Problem

Integers $a$, $b$, and $c$ satisfy $ab + c = 100$, $bc + a = 87$, and $ca + b = 60$. What is $ab + bc + ca$?

$\textbf{(A) }212 \qquad \textbf{(B) }247 \qquad \textbf{(C) }258 \qquad \textbf{(D) }276 \qquad \textbf{(E) }284 \qquad$

Solution 1

Subtracting the first two equations yields $(a-c)(b-1)=13$. Notice that both factors are integers, so $b-1$ could equal one of $13,1,-1,-13$ and $b=14,2,0,-12$. We consider each case separately:

For $b=0$, from the second equation, we see that $a=87$. Then $87c=60$, which is not possible as $c$ is an integer, so this case is invalid.

For $b=2$, we have $2c+a=87$ and $ca=58$, which by experimentation on the factors of $58$ has no solution, so this is also invalid.

For $b=14$, we have $14c+a=87$ and $ca=46$, which by experimentation on the factors of $46$ has no solution, so this is also invalid.

Thus, we must have $b=-12$, so $a=12c+87$ and $ca=72$. Thus $c(12c+87)=72$, so $c(4c+29)=24$. We can simply trial and error this to find that $c=-8$ so then $a=-9$. The answer is then $(-9)(-12)+(-12)(-8)+(-8)(-9)=108+96+72=\boxed{\textbf{(D) }276}$.

~eevee9406

minor edits by Lord_Erty09

Solution 2

Adding up first two equations: \[(a+c)(b+1)=187\] \[b+1=\pm 11,\pm 17\] \[b=-12,10,-18,16\]

Subtracting equation 1 from equation 2: \[(a-c)(b-1)=13\] \[b-1=\pm 1,\pm 13\] \[b=0,2,-12,14\]

\[\Rightarrow b=-12\]

Which implies that $a+c=-17$ from $(a+c)(b+1)=187$

Giving us that $a+b+c=-29$

Therefore, $ab+bc+ac=100+87+60-(a+b+c)=\boxed{\text{(D) }276}$

~lptoggled

Solution 3 (Guess and check)

The idea is that you could guess values for $c$, since then $a$ and $b$ are factors of $100 - c$. The important thing to realize is that $a$, $b$, and $c$ are all negative. Then, this can be solved in a few minutes, giving the solution $(-9, -12, -8)$, which gives the answer $\boxed{\textbf{(D)} 276}$ ~andliu766


Solution 4

\begin{align} ab + c &= 100 \\ bc + a &= 87 \\ ca + b &= 60 \end{align}

\[(1) + (2) \implies  ab + c +bc + a = (a+c)(b+1)=187\implies b+1=\pm 11,\pm 17\]

\[(1) - (2) \implies ab + c - bc - a = (a-c)(b-1)=13\implies b-1=\pm 1,\pm 13\]

Note that $(b+1)-(b-1)=2$, and the only possible pair of results that yields this is $b-1=-13$ and $b+1=-11$, so $a+c=-17$.

Therefore,

\[ab+ba+ac=ab + c +bc + a + ca + b -(a+b+c) = (1)+(2)+(3) - (a+b+c) = 100+87+60-(a+b+c)=\boxed{\textbf{(D) }276}.\] ~luckuso, yuvag, Technodoggo (LaTeX credits to the latter two and editing to the latter)

Solution 5

\begin{align} ab + c &= 100 \\ bc + a &= 87 \\ ca + b &= 60 \end{align}

(1)(2)ab+cbca=(ac)(b1)=13(2)(3)bc+acab=(ba)(c1)=27(3)(1)ca+babc=(cb)(a1)=40

There are $3$ ordered pairs of $(a,b,c)$: $(5,14,4)$, $(-3,-12,-3)$, $(-9,-12,-8)$.

However, only the last ordered pair meets all three equations.

Therefore, $ab+ba+ac= -9*-12+-12*-8+-8*-9 = \boxed{\textbf{(D) }276}.$

~luckuso, megaboy6679 (formatting), Technodoggo (LaTeX optimization/clarity adjustments)

Solution 6

To solve the problem, we systematically test the options using elimination:

\subsection*{Step 1: Testing positive values} We begin by testing three positive values, but none satisfy the equation when there is a plus sign. For example, (12,8,4) satisfies ab+c, but does not satisfy bc+a, or ac+b. From this observation, we conclude that the answer cannot be A or B.

\subsection*{Step 2: Testing option C} Option C states ab+bc+ca=258. If true, then: \[ a + b + c = -11 \] This sum is too large. Furthermore, if all three numbers are negative, the solution still fails. For example, testing (4,5,2) confirms the equation is not satisfied. Thus, we rule out C.

\subsection*{Step 3: Testing options D and E} For option E, the sum a+b+c would be: \[ 247 - 284 = -37 \] Testing values such as (11,12,14), the resulting sums ab+c, bc+a, and ac+b are far too large to satisfy the equation. Therefore, E is also eliminated.

\subsection*{Step 4: Verifying D} Finally, we test option D. Using ab+bc+ca=276, the values (9,12,8) satisfy the equation. Thus, the correct answer is: $ab+ba+ac= -9*-12+-12*-8+-8*-9 = \boxed{\textbf{(D) }276}.$

~pimathmonkey

Video Solution by Power Solve

https://www.youtube.com/watch?v=LNYzBhf3Ke0

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=6SQ74nt3ynw

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png