Difference between revisions of "2024 AMC 12A Problems/Problem 19"
Evanhliu2009 (talk | contribs) (→Solution 1) |
(→Solution 1) |
||
(7 intermediate revisions by 5 users not shown) | |||
Line 5: | Line 5: | ||
==Solution 1== | ==Solution 1== | ||
+ | |||
+ | <asy> | ||
+ | import geometry; | ||
+ | |||
+ | size(200); | ||
+ | |||
+ | // from geogebra lol | ||
+ | pair A = (-1.66, 0.33); | ||
+ | pair B = (-9.61277, 1.19799); | ||
+ | pair C = (-7.83974, 3.61798); | ||
+ | pair D = (-4.88713, 4.14911); | ||
+ | |||
+ | draw(circumcircle(A, B, C)); | ||
+ | |||
+ | draw(A--C); | ||
+ | draw(A--D); | ||
+ | draw(C--D); | ||
+ | draw(B--C); | ||
+ | draw(A--B); | ||
+ | |||
+ | label("$A$", A, E); | ||
+ | label("$B$", B, W); | ||
+ | label("$C$", C, NW); | ||
+ | label("$D$", D, N); | ||
+ | |||
+ | label("$7$", midpoint(A--C), SW); | ||
+ | label("$5$", midpoint(A--D), NE); | ||
+ | label("$3$", midpoint(C--D)+ dir(135)*0.3, N); | ||
+ | label("$3$", midpoint(B--C)+dir(180)*0.3, NW); | ||
+ | label("$8$", midpoint(A--B), S); | ||
+ | |||
+ | markangle(Label("$60^\circ$", Relative(0.5)), A, B, C, radius=10); | ||
+ | markangle(Label("$120^\circ$", Relative(0.5)), C, D, A, radius=10); | ||
+ | </asy> | ||
+ | ~diagram by erics118 | ||
+ | |||
First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals. | First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals. | ||
− | Let <math>AC=u</math>. | + | |
+ | Let <math>AC=u</math>. Apply the [[Law of Cosines]] on <math>\triangle ACD</math>: | ||
<cmath>u^2=3^2+5^2-2(3)(5)\cos120^\circ</cmath> | <cmath>u^2=3^2+5^2-2(3)(5)\cos120^\circ</cmath> | ||
<cmath>u=7</cmath> | <cmath>u=7</cmath> | ||
− | |||
Let <math>AB=v</math>. Apply the Law of Cosines on <math>\triangle ABC</math>: | Let <math>AB=v</math>. Apply the Law of Cosines on <math>\triangle ABC</math>: | ||
Line 16: | Line 52: | ||
<cmath>v=8</cmath> | <cmath>v=8</cmath> | ||
− | + | By [[Ptolemy’s Theorem]], | |
− | By Ptolemy’s Theorem, | ||
<cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath> | <cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath> | ||
<cmath>8 \cdot 3+5 \cdot 3=7BD</cmath> | <cmath>8 \cdot 3+5 \cdot 3=7BD</cmath> | ||
<cmath>BD=\frac{39}{7}</cmath> | <cmath>BD=\frac{39}{7}</cmath> | ||
− | Since <math>\frac{39}{7}< | + | Since <math>\frac{39}{7}<7</math>, |
The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>. | The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>. | ||
− | |||
+ | ~lptoggled, formatting by eevee9406, typo fixed by meh494 | ||
==Solution 2 (Law of Cosines + Law of Sines)== | ==Solution 2 (Law of Cosines + Law of Sines)== | ||
Line 38: | Line 73: | ||
~evanhliu2009 | ~evanhliu2009 | ||
+ | |||
+ | ==Video Solution by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=f32mBtYTZp8 | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=A|num-b=18|num-a=20}} | {{AMC12 box|year=2024|ab=A|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 17:31, 17 November 2024
Contents
[hide]Problem
Cyclic quadrilateral has lengths and with . What is the length of the shorter diagonal of ?
Solution 1
~diagram by erics118
First, by properties of cyclic quadrilaterals.
Let . Apply the Law of Cosines on :
Let . Apply the Law of Cosines on :
By Ptolemy’s Theorem, Since , The answer is .
~lptoggled, formatting by eevee9406, typo fixed by meh494
Solution 2 (Law of Cosines + Law of Sines)
Draw diagonals and . By Law of Cosines,
~evanhliu2009
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=f32mBtYTZp8
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.