Difference between revisions of "2014 AMC 8 Problems/Problem 21"

m (Solution 2)
(One intermediate revision by one other user not shown)
Line 10: Line 10:
  
 
== Concept Solution==
 
== Concept Solution==
for a number to be divisible by 3, the sum of its digits must be divisible by 3. In the number 74A52B1, 7+4+A+5+2+B+1 must be divisible by 3. We get 19+A+B. 21 is the closest multiple of 3 meaning that A=2, B=0, order doesn't matter. Now we plug in those values for 326AB4C. It will be 3+2+6+2+0+4+C to get 17+C. The closest multiple of 3 is 18. So that means 17+C=18. Solving for C, our answer is <math>\boxed{\textbf{(A) }1}</math>
+
for a number to be divisible by 3, the sum of its digits must be divisible by 3. In the number 74A52B1, 7+4+A+5+2+B+1 must be divisible by 3. We get 19+A+B. 21 is the closest multiple of 3 meaning that A=2, B=0, order doesn't matter. Now we plug in those values for 326AB4C. It will be 3+2+6+2+0+4+C to get 17+C. The closest multiple of 3 is 18. So that means 17+C=18. Solving for C, our answer is <math>\boxed{\textbf{(A) }1}</math>-TheNerdWhoIsNerdy.
  
==Video Solution by OmegaLearn==
+
== Video Solution by Pi Academy (Fast and Easy ⚡️🚀) ==
 +
 
 +
https://youtu.be/t-SjP-gqw20?si=y6ECC_zEYV5OcxY2
 +
 
 +
 
 +
== Video Solution by OmegaLearn==
 
https://youtu.be/6xNkyDgIhEE?t=2593
 
https://youtu.be/6xNkyDgIhEE?t=2593
  

Revision as of 20:26, 17 November 2024

Problem 21

The $7$-digit numbers $\underline{7} \underline{4} \underline{A} \underline{5} \underline{2} \underline{B} \underline{1}$ and $\underline{3} \underline{2} \underline{6} \underline{A} \underline{B} \underline{4} \underline{C}$ are each multiples of $3$. Which of the following could be the value of $C$?

$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }5\qquad \textbf{(E) }8$


Solution 2

Since both numbers are divisible by 3, the sum of their digits has to be divisible by three. $7 + 4 + 5 + 2 + 1 = 19$. To be a multiple of $3$, $A + B$ has to be either $2$ or $5$ or $8$... and so on. We add up the numerical digits in the second number; $3 + 2 + 6 + 4 = 15$. We then add two of the selected values, $5$ to $15$, to get $20$. We then see that C = $1, 4$ or $7, 10$... and so on, otherwise the number will not be divisible by three. We then add $8$ to $15$, to get $23$, which shows us that C = $1$ or $4$ or $7$... and so on. To be a multiple of three, we select a few of the common numbers we got from both these equations, which could be $1, 4,$ and $7$. However, in the answer choices, there is no $7$ or $4$ or anything greater than $7$, but there is a $1$, so $\boxed{\textbf{(A) }1}$ is our answer.

Concept Solution

for a number to be divisible by 3, the sum of its digits must be divisible by 3. In the number 74A52B1, 7+4+A+5+2+B+1 must be divisible by 3. We get 19+A+B. 21 is the closest multiple of 3 meaning that A=2, B=0, order doesn't matter. Now we plug in those values for 326AB4C. It will be 3+2+6+2+0+4+C to get 17+C. The closest multiple of 3 is 18. So that means 17+C=18. Solving for C, our answer is $\boxed{\textbf{(A) }1}$-TheNerdWhoIsNerdy.

Video Solution by Pi Academy (Fast and Easy ⚡️🚀)

https://youtu.be/t-SjP-gqw20?si=y6ECC_zEYV5OcxY2


Video Solution by OmegaLearn

https://youtu.be/6xNkyDgIhEE?t=2593

Video Solution

https://youtu.be/7TOtBiod55Q ~savannahsolver

See Also

2014 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png