ONLINE AMC 8 PREP WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

Difference between revisions of "2008 AMC 8 Problems"

(Problem 21)
m (Problem 24)
(8 intermediate revisions by 2 users not shown)
Line 250: Line 250:
  
 
==Problem 19==
 
==Problem 19==
Eight points are spaced around at intervals of one unit around a <math>2 \times 2</math> square, as shown. Two of the <math>8</math> points are chosen at random. What is the probability that the two points are one unit apart  
+
Eight points are spaced around at intervals of one unit around a <math>2 \times 2</math> square, as shown. Two of the <math>8</math> points are chosen at random. What is the probability that the two points are one unit apart?
<assy>
+
<asy>
 
size((50));
 
size((50));
 
dot((5,0));
 
dot((5,0));
Line 262: Line 262:
 
dot((5,-5));
 
dot((5,-5));
 
</asy>
 
</asy>
<math> \textbf{(Anus)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{2}{7}\qquad\textbf{(C)}\ \frac{4}{11}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ \frac{4}{7} </math>
+
<math> \textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{2}{7}\qquad\textbf{(C)}\ \frac{4}{11}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ \frac{4}{7} </math>
  
 
[[2008 AMC 8 Problems/Problem 19|Solution]]
 
[[2008 AMC 8 Problems/Problem 19|Solution]]
Line 283: Line 283:
 
real d=90-63.43494882;
 
real d=90-63.43494882;
 
draw(ellipse((origin), 2, 4));
 
draw(ellipse((origin), 2, 4));
fill((0,4)--(0,-90)--(-8,-4)--(-8,4)--cycle, white);
+
fill((0,4)--(0,-4)--(-8,-4)--(-8,4)--cycle, white);
draw(ellipse((-4.98,0), 2, 4));
+
draw(ellipse((-4,0), 2, 4));
 
draw((0,4)--(-4,4));
 
draw((0,4)--(-4,4));
 
draw((0,-4)--(-4,-4));
 
draw((0,-4)--(-4,-4));
Line 290: Line 290:
 
draw((-4,4)--(-8,4), dashed);
 
draw((-4,4)--(-8,4), dashed);
 
draw((-4,-4)--(-8,-4), dashed);
 
draw((-4,-4)--(-8,-4), dashed);
draw((-4,4.93)--(-4,5));
+
draw((-4,4.3)--(-4,5));
draw((0,6.3)--(0,5));
+
draw((0,4.3)--(0,5));
 
draw((-7,4)--(-7,-4), Arrows(5));
 
draw((-7,4)--(-7,-4), Arrows(5));
 
draw((-4,4.7)--(0,4.7), Arrows(5));
 
draw((-4,4.7)--(0,4.7), Arrows(5));
 
label("$8$ cm", (-7,0), W);
 
label("$8$ cm", (-7,0), W);
label("$6$ cm", (-2,99.7), N);</asy>
+
label("$6$ cm", (-2,4.7), N);</asy>
  
 
<math>\textbf{(A)} 48 \qquad
 
<math>\textbf{(A)} 48 \qquad
Line 338: Line 338:
  
 
[[2008 AMC 8 Problems/Problem 23|Solution]]
 
[[2008 AMC 8 Problems/Problem 23|Solution]]
 
==Problem 24==
 
Ten tiles numbered <math>1</math> through <math>10</math> are turned face down. One tile is turned up at random, and a die is rolled. What is the probability that the product of the numbers on the tile and the die will be a square?
 
 
<math>\textbf{(A)}\ \frac{1}{10}\qquad
 
\textbf{(B)}\ \frac{1}{6}\qquad
 
\textbf{(C)}\ \frac{11}{60}\qquad
 
\textbf{(D)}\ \frac{1}{5}\qquad
 
\textbf{(E)}\ \frac{7}{30}</math>
 
 
[[2008 AMC 8 Problems/Problem 24|Solution]]
 
 
==Problem 25==
 
Margie's winning art design is shown. The smallest circle has radius 2 inches, with each successive circle's radius increasing by 2 inches. Which of the following is closest to the percent of the design that is black?
 
 
<asy>
 
real d=320;
 
pair O=origin;
 
pair P=O+8*dir(d);
 
pair A0 = origin;
 
pair A1 = O+1*dir(d);
 
pair A2 = O+2*dir(d);
 
pair A3 = O+3*dir(d);
 
pair A4 = O+4*dir(d);
 
pair A5 = O+5*dir(d);
 
filldraw(Circle(A0, 6), white, black);
 
filldraw(circle(A1, 5), black, black);
 
filldraw(circle(A2, 4), white, black);
 
filldraw(circle(A3, 3), black, black);
 
filldraw(circle(A4, 2), white, black);
 
filldraw(circle(A5, 1), black, black);
 
</asy>
 
 
<math> \textbf{(A)}\ 42\qquad \textbf{(B)}\ 44\qquad \textbf{(C)}\ 46\qquad \textbf{(D)}\ 47\qquad \textbf{(E)}\ 49\qquad</math>
 
 
[[2008 AMC 8 Problems/Problem 25|Solution]]
 
  
 
==See Also==
 
==See Also==

Revision as of 16:01, 28 November 2024

2008 AMC 8 (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 1 point for each correct answer. There is no penalty for wrong answers.
  3. No aids are permitted other than plain scratch paper, writing utensils, ruler, and erasers. In particular, graph paper, compass, protractor, calculators, computers, smartwatches, and smartphones are not permitted. Rules
  4. Figures are not necessarily drawn to scale.
  5. You will have 40 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Susan had 50 dollars to spend at the carnival. She spent 12 dollars on food and twice as much on rides. How many dollars did she have left to spend?

$\textbf{(A)}\ 12 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 26 \qquad \textbf{(D)}\ 38 \qquad \textbf{(E)}\ 50$

Solution

Problem 2

The ten-letter code $\text{BEST OF LUCK}$ represents the ten digits $0-9$, in order. What 4-digit number is represented by the code word $\text{CLUE}$?

$\textbf{(A)}\ 8671 \qquad \textbf{(B)}\ 8672 \qquad \textbf{(C)}\ 9781 \qquad \textbf{(D)}\ 9782 \qquad \textbf{(E)}\ 9872$

Solution

Problem 3

If February is a month that contains Friday the $13^{\text{th}}$, what day of the week is February 1?

$\textbf{(A)}\ \text{Sunday} \qquad \textbf{(B)}\ \text{Monday} \qquad \textbf{(C)}\ \text{Wednesday} \qquad \textbf{(D)}\ \text{Thursday}\qquad \textbf{(E)}\ \text{Saturday}$

Solution

Problem 4

In the figure, the outer equilateral triangle has area $16$, the inner equilateral triangle has area $1$, and the three trapezoids are congruent. What is the area of one of the trapezoids? [asy] size((70)); draw((0,0)--(7.5,13)--(15,0)--(0,0)); draw((1.88,3.25)--(9.45,3.25)); draw((11.2,0)--(7.5,6.5)); draw((9.4,9.7)--(5.6,3.25)); [/asy] $\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad  \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 7$

Solution

Problem 5

Barney Schwinn notices that the odometer on his bicycle reads $1441$, a palindrome, because it reads the same forward and backward. After riding $4$ more hours that day and $6$ the next, he notices that the odometer shows another palindrome, $1661$. What was his average speed in miles per hour?

$\textbf{(A)}\ 15\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ 18\qquad \textbf{(D)}\ 20\qquad \textbf{(E)}\ 22$

Solution

Problem 6

In the figure, what is the ratio of the area of the gray squares to the area of the white squares? [asy] size((70)); draw((10,0)--(0,10)--(-10,0)--(0,-10)--(10,0)); draw((-2.5,-7.5)--(7.5,2.5)); draw((-5,-5)--(5,5)); draw((-7.5,-2.5)--(2.5,7.5)); draw((-7.5,2.5)--(2.5,-7.5)); draw((-5,5)--(5,-5)); draw((-2.5,7.5)--(7.5,-2.5)); fill((-10,0)--(-7.5,2.5)--(-5,0)--(-7.5,-2.5)--cycle, gray); fill((-5,0)--(0,5)--(5,0)--(0,-5)--cycle, gray); fill((5,0)--(7.5,2.5)--(10,0)--(7.5,-2.5)--cycle, gray); [/asy] $\textbf{(A)}\ 3:10 \qquad\textbf{(B)}\ 3:8 \qquad\textbf{(C)}\ 3:7 \qquad\textbf{(D)}\ 3:5 \qquad\textbf{(E)}\ 1:1$

Solution

Problem 7

If $\frac{3}{5}=\frac{M}{45}=\frac{60}{N}$, what is $M+N$?

$\textbf{(A)}\ 27\qquad \textbf{(B)}\ 29 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 105\qquad \textbf{(E)}\ 127$

Solution

Problem 8

Candy sales from the Boosters Club from January through April are shown. What were the average sales per month in dollars? [asy] draw((0,0)--(36,0)--(36,24)--(0,24)--cycle); draw((0,4)--(36,4)); draw((0,8)--(36,8)); draw((0,12)--(36,12)); draw((0,16)--(36,16)); draw((0,20)--(36,20)); fill((4,0)--(8,0)--(8,20)--(4,20)--cycle, black); fill((12,0)--(16,0)--(16,12)--(12,12)--cycle, black); fill((20,0)--(24,0)--(24,8)--(20,8)--cycle, black); fill((28,0)--(32,0)--(32,24)--(28,24)--cycle, black); label("120", (0,24), W); label("80", (0,16), W); label("40", (0,8), W); label("Jan", (6,0), S); label("Feb", (14,0), S); label("Mar", (22,0), S); label("Apr", (30,0), S); [/asy] $\textbf{(A)}\ 60\qquad\textbf{(B)}\ 70\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 80\qquad\textbf{(E)}\ 85$

Solution

Problem 9

In $2005$ Tycoon Tammy invested $100$ dollars for two years. During the first year her investment suffered a $15\%$ loss, but during the second year the remaining investment showed a $20\%$ gain. Over the two-year period, what was the change in Tammy's investment?

$\textbf{(A)}\  5\%\text{ loss}\qquad \textbf{(B)}\ 2\%\text{ loss}\qquad \textbf{(C)}\ 1\%\text{ gain}\qquad \textbf{(D)}\ 2\% \text{ gain} \qquad \textbf{(E)}\  5\%\text{ gain} \qquad$

Solution

Problem 10

The average age of the $6$ people in Room A is $40$. The average age of the $4$ people in Room B is $25$. If the two groups are combined, what is the average age of all the people?

$\textbf{(A)}\ 32.5 \qquad \textbf{(B)}\ 33 \qquad \textbf{(C)}\ 33.5 \qquad \textbf{(D)}\ 34\qquad \textbf{(E)}\ 35$

Solution

Problem 11

Each of the $39$ students in the eighth grade at Lincoln Middle School has one dog or one cat or both a dog and a cat. Twenty students have a dog and $26$ students have a cat. How many students have both a dog and a cat?

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 13\qquad \textbf{(C)}\ 19\qquad \textbf{(D)}\ 39\qquad \textbf{(E)}\ 46$

Solution

Problem 12

A ball is dropped from a height of $3$ meters. On its first bounce it rises to a height of $2$ meters. It keeps falling and bouncing to $\frac{2}{3}$ of the height it reached in the previous bounce. On which bounce will it rise to a height less than $0.5$ meters?

$\textbf{(A)}\  3 \qquad \textbf{(B)}\  4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 7$

Solution

Problem 13

Mr. Harman needs to know the combined weight in pounds of three boxes he wants to mail. However, the only available scale is not accurate for weights less than $100$ pounds or more than $150$ pounds. So the boxes are weighed in pairs in every possible way. The results are $122$, $125$ and $127$ pounds. What is the combined weight in pounds of the three boxes?

$\textbf{(A)}\ 160\qquad \textbf{(B)}\ 170\qquad \textbf{(C)}\ 187\qquad \textbf{(D)}\ 195\qquad \textbf{(E)}\ 354$

Solution

Problem 14

Three $\text{A's}$, three $\text{B's}$, and three $\text{C's}$ are placed in the nine spaces so that each row and column contain one of each letter. If $\text{A}$ is placed in the upper left corner, how many arrangements are possible? [asy] size((80)); draw((0,0)--(9,0)--(9,9)--(0,9)--(0,0)); draw((3,0)--(3,9)); draw((6,0)--(6,9)); draw((0,3)--(9,3)); draw((0,6)--(9,6)); label("A", (1.5,7.5)); [/asy] $\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 6$

Solution

Problem 15

In Theresa's first $8$ basketball games, she scored $7, 4, 3, 6, 8, 3, 1$ and $5$ points. In her ninth game, she scored fewer than $10$ points and her points-per-game average for the nine games was an integer. Similarly in her tenth game, she scored fewer than $10$ points and her points-per-game average for the $10$ games was also an integer. What is the product of the number of points she scored in the ninth and tenth games?

$\textbf{(A)}\ 35\qquad \textbf{(B)}\ 40\qquad \textbf{(C)}\ 48\qquad \textbf{(D)}\ 56\qquad \textbf{(E)}\ 72$

Solution

Problem 16

A shape is created by joining seven unit cubes, as shown. What is the ratio of the volume in cubic units to the surface area in square units?

[asy] import three; defaultpen(linewidth(0.8)); real r=0.5; currentprojection=orthographic(1,1/2,1/4); draw(unitcube, white, thick(), nolight); draw(shift(1,0,0)*unitcube, white, thick(), nolight); draw(shift(1,-1,0)*unitcube, white, thick(), nolight); draw(shift(1,0,-1)*unitcube, white, thick(), nolight); draw(shift(2,0,0)*unitcube, white, thick(), nolight); draw(shift(1,1,0)*unitcube, white, thick(), nolight); draw(shift(1,0,1)*unitcube, white, thick(), nolight);[/asy]

$\textbf{(A)} \:1 : 6 \qquad\textbf{ (B)}\: 7 : 36 \qquad\textbf{(C)}\: 1 : 5 \qquad\textbf{(D)}\: 7 : 30\qquad\textbf{ (E)}\: 6 : 25$

Solution

Problem 17

Ms. Osborne asks each student in her class to draw a rectangle with integer side lengths and a perimeter of $50$ units. All of her students calculate the area of the rectangle they draw. What is the difference between the largest and smallest possible areas of the rectangles?

$\textbf{(A)}\ 76\qquad \textbf{(B)}\ 120\qquad \textbf{(C)}\ 128\qquad \textbf{(D)}\ 132\qquad \textbf{(E)}\ 136$

Solution

Problem 18

Two circles that share the same center have radii $10$ meters and $20$ meters. An aardvark runs along the path shown, starting at $A$ and ending at $K$. How many meters does the aardvark run? [asy] size((150)); draw((10,0)..(0,10)..(-10,0)..(0,-10)..cycle); draw((20,0)..(0,20)..(-20,0)..(0,-20)..cycle); draw((20,0)--(-20,0)); draw((0,20)--(0,-20)); draw((-2,21.5)..(-15.4, 15.4)..(-22,0), EndArrow); draw((-18,1)--(-12, 1), EndArrow); draw((-12,0)..(-8.3,-8.3)..(0,-12), EndArrow); draw((1,-9)--(1,9), EndArrow); draw((0,12)..(8.3, 8.3)..(12,0), EndArrow); draw((12,-1)--(18,-1), EndArrow); label("$A$", (0,20), N); label("$K$", (20,0), E); [/asy] $\textbf{(A)}\ 10\pi+20\qquad\textbf{(B)}\ 10\pi+30\qquad\textbf{(C)}\ 10\pi+40\qquad\textbf{(D)}\ 20\pi+20\qquad \\ \textbf{(E)}\ 20\pi+40$

Solution

Problem 19

Eight points are spaced around at intervals of one unit around a $2 \times 2$ square, as shown. Two of the $8$ points are chosen at random. What is the probability that the two points are one unit apart? [asy] size((50)); dot((5,0)); dot((5,5)); dot((0,5)); dot((-5,5)); dot((-5,0)); dot((-5,-5)); dot((0,-5)); dot((5,-5)); [/asy] $\textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{2}{7}\qquad\textbf{(C)}\ \frac{4}{11}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ \frac{4}{7}$

Solution

Problem 20

The students in Mr. Neatkin's class took a penmanship test. Two-thirds of the boys and $\frac{3}{4}$ of the girls passed the test, and an equal number of boys and girls passed the test. What is the minimum possible number of students in the class?

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ 17\qquad \textbf{(C)}\ 24\qquad \textbf{(D)}\ 27\qquad \textbf{(E)}\ 36$

Solution

Problem 21

Jerry cuts a wedge from a $6$-cm cylinder of bologna as shown by the dashed curve. Which answer choice is closest to the volume of his wedge in cubic centimeters? [asy] defaultpen(linewidth(0.65)); real d=90-63.43494882; draw(ellipse((origin), 2, 4)); fill((0,4)--(0,-4)--(-8,-4)--(-8,4)--cycle, white); draw(ellipse((-4,0), 2, 4)); draw((0,4)--(-4,4)); draw((0,-4)--(-4,-4)); draw(shift(-2,0)*rotate(-d-5)*ellipse(origin, 1.82, 4.56), linetype("10 10")); draw((-4,4)--(-8,4), dashed); draw((-4,-4)--(-8,-4), dashed); draw((-4,4.3)--(-4,5)); draw((0,4.3)--(0,5)); draw((-7,4)--(-7,-4), Arrows(5)); draw((-4,4.7)--(0,4.7), Arrows(5)); label("$8$ cm", (-7,0), W); label("$6$ cm", (-2,4.7), N);[/asy]

$\textbf{(A)} 48 \qquad \textbf{(B)} 75 \qquad \textbf{(C)}151\qquad \textbf{(D)}192 \qquad \textbf{(E)}603$

Solution

Problem 22

For how many positive integer values of $n$ are both $\frac{n}{3}$ and $3n$ three-digit whole numbers?

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ 21\qquad \textbf{(C)}\ 27\qquad \textbf{(D)}\ 33\qquad \textbf{(E)}\ 34$

Solution

Problem 23

In square $ABCE$, $AF=2FE$ and $CD=2DE$. What is the ratio of the area of $\triangle BFD$ to the area of square $ABCE$? [asy] size((100)); draw((0,0)--(9,0)--(9,9)--(0,9)--cycle); draw((3,0)--(9,9)--(0,3)--cycle); dot((3,0)); dot((0,3)); dot((9,9)); dot((0,0)); dot((9,0)); dot((0,9)); label("$A$", (0,9), NW); label("$B$", (9,9), NE); label("$C$", (9,0), SE); label("$D$", (3,0), S); label("$E$", (0,0), SW); label("$F$", (0,3), W); [/asy] $\textbf{(A)}\ \frac{1}{6}\qquad\textbf{(B)}\ \frac{2}{9}\qquad\textbf{(C)}\ \frac{5}{18}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{7}{20}$

Solution

See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
2007 AMC 8
Followed by
2009 AMC 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png