Difference between revisions of "2000 AMC 12 Problems/Problem 2"

m (Solution)
(6 intermediate revisions by 2 users not shown)
Line 9: Line 9:
 
We can use an elementary exponents rule to solve our problem.
 
We can use an elementary exponents rule to solve our problem.
 
We know that <math>a^b\cdot a^c = a^{b+c}</math>. Hence,
 
We know that <math>a^b\cdot a^c = a^{b+c}</math>. Hence,
<math> 2000(2000^{2000}) = (2000^{1})(2000^{2000}) = 2000^{2000+1} = 2000^{2001} \Rightarrow \boxed{\textbf{(A) } 2000^{2001}}</math>
+
<math> 2000(2000^{2000}) = (2000^{1})(2000^{2000}) = 2000^{2000+1} = 2000^{2001} \Rightarrow \boxed{\textbf{(A) } 2000^{2001}}</math>.
  
 
Solution edited by armang32324 and integralarefun
 
Solution edited by armang32324 and integralarefun
Line 16: Line 16:
  
 
We see that <math>a(a^{2000})=a^{2001}.</math> Only answer choice <math>\boxed{\textbf{(A)}}</math> satisfies this requirement.
 
We see that <math>a(a^{2000})=a^{2001}.</math> Only answer choice <math>\boxed{\textbf{(A)}}</math> satisfies this requirement.
 +
 +
-SirAppel
 +
 +
==Solution 3==
 +
 +
Say you somehow forgot the basic rules of exponents, you could just deduce <math>2000^{2000}</math> is a line of 2000 2000's being multiplied, and if we multiplied by this line by an additional 2000, we would then have <math>\boxed{\textbf{(A)}}</math> 2000's lined up multiplying each other.
 +
 +
- itsj
  
 
== Video Solution (Daily Dose of Math) ==
 
== Video Solution (Daily Dose of Math) ==
Line 23: Line 31:
 
~Thesmartgreekmathdude
 
~Thesmartgreekmathdude
  
-SirAppel
 
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2000|num-b=1|num-a=3}}
 
{{AMC12 box|year=2000|num-b=1|num-a=3}}

Revision as of 18:37, 30 November 2024

The following problem is from both the 2000 AMC 12 #2 and 2000 AMC 10 #2, so both problems redirect to this page.

Problem

$2000(2000^{2000}) = ?$

$\textbf{(A)} \ 2000^{2001}  \qquad \textbf{(B)} \ 4000^{2000}  \qquad \textbf{(C)} \ 2000^{4000}  \qquad \textbf{(D)} \ 4,000,000^{2000}  \qquad \textbf{(E)} \ 2000^{4,000,000}$

Solution

We can use an elementary exponents rule to solve our problem. We know that $a^b\cdot a^c = a^{b+c}$. Hence, $2000(2000^{2000}) = (2000^{1})(2000^{2000}) = 2000^{2000+1} = 2000^{2001} \Rightarrow \boxed{\textbf{(A) } 2000^{2001}}$.

Solution edited by armang32324 and integralarefun

Solution 2

We see that $a(a^{2000})=a^{2001}.$ Only answer choice $\boxed{\textbf{(A)}}$ satisfies this requirement.

-SirAppel

Solution 3

Say you somehow forgot the basic rules of exponents, you could just deduce $2000^{2000}$ is a line of 2000 2000's being multiplied, and if we multiplied by this line by an additional 2000, we would then have $\boxed{\textbf{(A)}}$ 2000's lined up multiplying each other.

- itsj

Video Solution (Daily Dose of Math)

https://www.youtube.com/watch?v=h0QtF9J0oPs

~Thesmartgreekmathdude

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png