Difference between revisions of "2024 AIME II Problems/Problem 10"

(Problem)
(Solution 10)
(104 intermediate revisions by 11 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Let <math>\triangle ABC</math> have circumcenter <math>O</math> and incenter <math>I</math> with <math>\overline{IA}\perp\overline{OI}</math>, circumradius <math>13</math>, and inradius <math>6</math>. Find <math>AB\cdot AC</math>.
 
Let <math>\triangle ABC</math> have circumcenter <math>O</math> and incenter <math>I</math> with <math>\overline{IA}\perp\overline{OI}</math>, circumradius <math>13</math>, and inradius <math>6</math>. Find <math>AB\cdot AC</math>.
 +
 +
==Solution 1 (Similar Triangles and PoP)==
 +
 +
Start off by (of course) drawing a diagram! Let <math>I</math> and <math>O</math> be the incenter and circumcenters of triangle <math>ABC</math>, respectively. Furthermore, extend <math>AI</math> to meet <math>BC</math> at <math>L</math> and the circumcircle of triangle <math>ABC</math> at <math>D</math>.
  
 
<asy>
 
<asy>
Line 6: Line 10:
 
import olympiad;
 
import olympiad;
 
real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6;
 
real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6;
pair A=(0,0),B=(c,0), D = (c/2, -2.2);
+
pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26);
pair C = (c/3,8.7*c/10);
+
pair A = (c/3,8.65*c/10);
 
draw(circumcircle(A,B,C));
 
draw(circumcircle(A,B,C));
 
pair I=incenter(A,B,C);
 
pair I=incenter(A,B,C);
 
pair O=circumcenter(A,B,C);
 
pair O=circumcenter(A,B,C);
pair L=extension(C,I,A,B);
+
pair L=extension(A,I,C,B);
 
dot(I^^O^^A^^B^^C^^D^^L);
 
dot(I^^O^^A^^B^^C^^D^^L);
draw(C--L);
+
draw(A--L);
 +
draw(A--D);
 
path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;}
 
path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;}
draw(A--B--D--cycle);
+
draw(C--B--D--cycle);
 
draw(A--C--B);
 
draw(A--C--B);
draw(A--I--B^^C--I);
+
draw(A--B);
 +
draw(B--I--C^^A--I);
 
draw(incircle(A,B,C));
 
draw(incircle(A,B,C));
label("$A$",A,SW);
+
label("$B$",B,SW);
label("$B$",B,SE);
+
label("$C$",C,SE);
label("$C$",C,N);
+
label("$A$",A,N);
 
label("$D$",D,S);
 
label("$D$",D,S);
label("$I$",I,NE);
+
label("$I$",I,NW);
 
label("$L$",L,SW);
 
label("$L$",L,SW);
 
label("$O$",O,E);
 
label("$O$",O,E);
label("$\alpha$",A,5*dir(midangle(C,A,I)),fontsize(8));
+
label("$\alpha$",B,5*dir(midangle(A,B,I)),fontsize(8));
label("$\alpha$",A,5*dir(midangle(I,A,B)),fontsize(8));
+
label("$\alpha$",B,5*dir(midangle(I,B,C)),fontsize(8));
label("$\beta$",B,12*dir(midangle(A,B,I)),fontsize(8));
+
label("$\beta$",C,12*dir(midangle(B,C,I)),fontsize(8));
label("$\beta$",B,12*dir(midangle(I,B,C)),fontsize(8));
+
label("$\beta$",C,12*dir(midangle(I,C,A)),fontsize(8));
label("$\gamma$",C,5*dir(midangle(A,C,I)),fontsize(8));
+
label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8));
label("$\gamma$",C,5*dir(midangle(I,C,B)),fontsize(8));
+
label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8));
 +
 
 +
draw(I--O);
 +
draw(A--O);
 +
draw(rightanglemark(A,I,O));
 
</asy>
 
</asy>
  
Solution in Progress
+
 
 +
We'll tackle the initial steps of the problem in two different manners, both leading us to the same final calculations.
 +
==Solution 1.1==
 +
Since <math>I</math> is the incenter, <math>\angle BAL \cong \angle DAC</math>. Furthermore, <math>\angle ABC</math> and <math>\angle ADC</math> are both subtended by the same arc <math>AC</math>, so <math>\angle ABC \cong \angle ADC.</math> Therefore by AA similarity, <math>\triangle ABL \sim \triangle ADC</math>.
 +
From this we can say that <cmath>\frac{AB}{AD} = \frac{AL}{AC} \implies AB \cdot AC = AL \cdot AD </cmath>
 +
 
 +
Since <math>AD</math> is a chord of the circle and <math>OI</math> is a perpendicular from the center to that chord, <math>OI</math> must bisect <math>AD</math>. This can be seen by drawing <math>OD</math> and recognizing that this creates two congruent right triangles. Therefore, <cmath>AD = 2 \cdot ID \implies AB \cdot AC = 2 \cdot AL \cdot ID</cmath>
 +
 
 +
We have successfully represented <math>AB \cdot AC</math> in terms of <math>AL</math> and <math>ID</math>. Solution 1.2 will explain an alternate method to get a similar relationship, and then we'll rejoin and finish off the solution.
 +
 
 +
==Solution 1.2==
 +
 
 +
<math>\angle ALB \cong \angle DLC</math> by vertical angles and <math>\angle LBA \cong \angle CDA</math> because both are subtended by arc <math>AC</math>. Thus <math>\triangle ABL \sim \triangle CDL</math>.
 +
 
 +
Thus <cmath>\frac{AB}{CD} = \frac{AL}{CL} \implies AB = CD \cdot \frac{AL}{CL}</cmath>
 +
 
 +
Symmetrically, we get <math>\triangle ALC \sim \triangle BLD</math>, so
 +
<cmath>\frac{AC}{BD} = \frac{AL}{BL} \implies AC = BD \cdot \frac{AL}{BL}</cmath>
 +
 
 +
Substituting, we  get <cmath>AB \cdot AC = CD \cdot \frac{AL}{CL} \cdot BD \cdot \frac{AL}{BL}</cmath>
 +
 
 +
Lemma 1: BD = CD = ID
 +
 
 +
Proof:
 +
 
 +
We commence angle chasing: we know <math>\angle DBC \cong DAC = \gamma</math>. Therefore <cmath>\angle IBD = \alpha + \gamma</cmath>.
 +
Looking at triangle <math>ABI</math>, we see that <math>\angle IBA = \alpha</math>, and <math>\angle BAI = \gamma</math>. Therefore because the sum of the angles must be <math>180</math>, <math>\angle BIA = 180-\alpha - \gamma</math>. Now <math>AD</math> is a straight line, so <cmath>\angle BID = 180-\angle BIA = \alpha+\gamma</cmath>.
 +
Since <math>\angle IBD = \angle BID</math>, triangle <math>IBD</math> is isosceles and thus <math>ID = BD</math>.
 +
 
 +
A similar argument should suffice to show <math>CD = ID</math> by symmetry, so thus <math>ID = BD = CD</math>.
 +
 
 +
Now we regroup and get <cmath>CD \cdot \frac{AL}{CL} \cdot BD \cdot \frac{AL}{BL} = ID^2 \cdot \frac{AL^2}{BL \cdot CL}</cmath>
 +
 
 +
Now note that <math>BL</math> and <math>CL</math> are part of the same chord in the circle, so we can use Power of a point to express their product differently. <cmath>BL \cdot CL = AL \cdot LD \implies AB \cdot AC = ID^2 \cdot \frac{AL}{LD}</cmath>
 +
 
 +
==Solution 1 (Continued)==
 +
Now we have some sort of expression for <math>AB \cdot AC</math> in terms of <math>ID</math> and <math>AL</math>. Let's try to find <math>AL</math> first.
 +
 
 +
Drop an altitude from <math>D</math> to <math>BC</math>, <math>I</math> to <math>AC</math>, and <math>I</math> to <math>BC</math>:
 +
 
 +
<asy>
 +
size(300);
 +
import olympiad;
 +
real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6;
 +
pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26), E = (c/2-0.01,0);
 +
pair A = (c/3,8.65*c/10);
 +
pair F = (2*c/3-0.14, 4-0.29);
 +
pair G = (c/2-0.68,0);
 +
draw(circumcircle(A,B,C));
 +
pair I=incenter(A,B,C);
 +
pair O=circumcenter(A,B,C);
 +
pair L=extension(A,I,C,B);
 +
dot(I^^O^^A^^B^^C^^D^^L^^E^^F^^G);
 +
draw(A--L);
 +
draw(A--D);
 +
draw(D--E);
 +
draw(I--F);
 +
draw(I--G);
 +
path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;}
 +
draw(C--B--D--cycle);
 +
draw(A--C--B);
 +
draw(A--B);
 +
draw(B--I--C^^A--I);
 +
draw(incircle(A,B,C));
 +
label("$B$",B,SW);
 +
label("$C$",C,SE);
 +
label("$A$",A,N);
 +
label("$D$",D,S);
 +
label("$I$",I,NW);
 +
label("$L$",L,SW);
 +
label("$O$",O,E);
 +
label("$E$",E,N);
 +
label("$F$",F,NE);
 +
label("$G$",G,SW);
 +
label("$\alpha$",B,5*dir(midangle(A,B,I)),fontsize(8));
 +
label("$\alpha$",B,5*dir(midangle(I,B,C)),fontsize(8));
 +
label("$\beta$",C,12*dir(midangle(B,C,I)),fontsize(8));
 +
label("$\beta$",C,12*dir(midangle(I,C,A)),fontsize(8));
 +
label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8));
 +
label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8));
 +
 
 +
 
 +
draw(I--O);
 +
draw(A--O);
 +
draw(rightanglemark(A,I,O));
 +
draw(rightanglemark(B,E,D));
 +
draw(rightanglemark(I,F,A));
 +
draw(rightanglemark(I,G,L));
 +
</asy>
 +
 
 +
Since <math>\angle DBE \cong \angle IAF</math> and <math>\angle BED \cong \angle IFA</math>, <math>\triangle BDE \sim \triangle AIF</math>.
 +
 
 +
Furthermore, we know <math>BD = ID</math> and <math>AI = ID</math>, so <math>BD = AI</math>. Since we have two right similar triangles and the corresponding sides are equal, these two triangles are actually congruent: this implies that <math>DE = IF = 6</math> since <math>IF</math> is the inradius.
 +
 
 +
Now notice that <math>\triangle IGL \sim \triangle DEL</math> because of equal vertical angles and right angles. Furthermore, <math>IG</math> is the inradius so it's length is <math>6</math>, which equals the length of <math>DE</math>. Therefore these two triangles are congruent, so <math>IL = DL</math>.
 +
 
 +
Since <math>IL+DL = ID</math>, <math>ID = 2 \cdot IL</math>. Furthermore, <math>AL = AI + IL = ID + IL = 3 \cdot IL</math>.
 +
 
 +
We can now plug back into our initial equations for <math>AB \cdot AC</math>:
 +
 
 +
From <math>1.1</math>, <math>AB \cdot AC = 2 \cdot AL \cdot ID = 2 \cdot 3 \cdot IL \cdot 2 \cdot IL</math>
 +
 
 +
<cmath>\implies AB \cdot AC = 3 \cdot (2 \cdot IL) \cdot (2 \cdot IL) = 3 \cdot ID^2</cmath>
 +
 
 +
Alternatively, from <math>1.2</math>, <math>AB \cdot AC = ID^2 \cdot \frac{AL}{DL}</math>
 +
<cmath>\implies AB \cdot AC = ID^2  \cdot \frac{3 \cdot IL}{IL} = 3 \cdot ID^2</cmath>
 +
 
 +
Now all we need to do is find <math>ID</math>.
 +
 
 +
The problem now becomes very simple if one knows Euler's Formula for the distance between the incenter and the circumcenter of a triangle. This formula states that <math>OI^2 = R(R-2r)</math>, where <math>R</math> is the circumradius and <math>r</math> is the inradius. We will prove this formula first, but if you already know the proof, skip this part.
 +
 
 +
Theorem: in any triangle, let <math>d</math> be the distance from the circumcenter to the incenter of the triangle. Then <math>d^2 = R \cdot (R-2r)</math>, where <math>R</math> is the circumradius of the triangle and <math>r</math> is the inradius of the triangle.
 +
 
 +
Proof:
 +
 
 +
Construct the following diagram:
 +
 
 +
 
 +
<asy>
 +
size(300);
 +
import olympiad;
 +
real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6;
 +
pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26), E = (c/2-0.01,0);
 +
pair A = (c/3,8.65*c/10);
 +
pair F = (2*c/3-0.14, 4-0.29);
 +
pair G = (c/2-0.68,0);
 +
draw(circumcircle(A,B,C));
 +
pair I=incenter(A,B,C);
 +
pair O=circumcenter(A,B,C);
 +
pair L=extension(A,I,C,B);
 +
dot(I^^O^^A^^B^^C^^D^^L^^F);
 +
draw(A--L);
 +
draw(A--D);
 +
draw(I--F);
 +
path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;}
 +
draw(C--B--D--cycle);
 +
draw(A--C--B);
 +
draw(A--B);
 +
draw(A--I);
 +
draw(incircle(A,B,C));
 +
label("$B$",B,SW);
 +
label("$C$",C,SE);
 +
label("$A$",A,N);
 +
label("$D$",D,S);
 +
label("$I$",I,NW);
 +
label("$L$",L,SW);
 +
label("$O$",O,S);
 +
label("$F$",F,NE);
 +
label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8));
 +
label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8));
 +
 
 +
pair H = (10*c/8-1.46,2*c/3-1.85), J = (-0.55,1.4);
 +
dot(H^^J);
 +
label("$H$", H, E);
 +
label("$J$", J, W);
 +
 
 +
 
 +
draw(I--O);
 +
draw(I--H);
 +
draw(I--J);
 +
draw(rightanglemark(I,F,A));
 +
</asy>
 +
 
 +
 
 +
Let <math>OI = d</math>, <math>OH = R</math>, <math>IF = r</math>. By the Power of a Point, <math>IH \cdot IJ = AI \cdot ID</math>.
 +
<math>IH = R+d</math> and <math>IJ = R-d</math>, so <cmath>(R+d) \cdot (R-d) = AI \cdot ID = AI \cdot CD</cmath>
 +
 
 +
Now consider <math>\triangle ACD</math>. Since all three points lie on the circumcircle of <math>\triangle ABC</math>, the two triangles have the same circumcircle. Thus we can apply law of sines and we get <math>\frac{CD}{\sin(\angle DAC)} = 2R</math>. This implies
 +
 
 +
<cmath>(R+d)\cdot (R-d) = AI \cdot 2R \cdot \sin(\angle DAC)</cmath>
 +
 
 +
Also, <math>\sin(\angle DAC)) = \sin(\angle IAF))</math>, and <math>\triangle IAF</math> is right. Therefore <cmath>\sin(\angle IAF) = \frac{IF}{AI} = \frac{r}{AI}</cmath>
 +
 
 +
Plugging in, we have
 +
 
 +
<cmath>(R+d)\cdot (R-d) = AI \cdot 2R \cdot \frac{r}{AI} = 2R \cdot r</cmath>
 +
 
 +
Thus <cmath>R^2-d^2 = 2R \cdot r \implies d^2 = R \cdot (R-2r)</cmath>
 +
 
 +
 
 +
 
 +
 
 +
Now we can finish up our solution. We know that <math>AB \cdot AC = 3 \cdot ID^2</math>. Since <math>ID = AI</math>, <math>AB \cdot AC = 3 \cdot AI^2</math>. Since <math>\triangle AOI</math> is right, we can apply the pythagorean theorem: <math>AI^2 = AO^2-OI^2 = 13^2-OI^2</math>.
 +
 
 +
Plugging in from Euler's formula, <math>OI^2 = 13 \cdot (13 - 2 \cdot 6) = 13</math>.
 +
 
 +
Thus <math>AI^2 = 169-13 = 156</math>.
 +
 
 +
Finally <math>AB \cdot AC = 3 \cdot AI^2 = 3 \cdot 156 = \textbf{468}</math>.
 +
 
 +
 
 
~KingRavi
 
~KingRavi
  
==Solution==
+
==Solution 2 (Excenters)==
 
By Euler's formula <math>OI^{2}=R(R-2r)</math>, we have <math>OI^{2}=13(13-12)=13</math>. Thus, by the Pythagorean theorem, <math>AI^{2}=13^{2}-13=156</math>. Let <math>AI\cap(ABC)=M</math>; notice <math>\triangle AOM</math> is isosceles and <math>\overline{OI}\perp\overline{AM}</math> which is enough to imply that <math>I</math> is the midpoint of <math>\overline{AM}</math>, and <math>M</math> itself is the midpoint of <math>II_{a}</math> where <math>I_{a}</math> is the <math>A</math>-excenter of <math>\triangle ABC</math>. Therefore, <math>AI=IM=MI_{a}=\sqrt{156}</math> and <cmath>AB\cdot AC=AI\cdot AI_{a}=3\cdot AI^{2}=\boxed{468}.</cmath>
 
By Euler's formula <math>OI^{2}=R(R-2r)</math>, we have <math>OI^{2}=13(13-12)=13</math>. Thus, by the Pythagorean theorem, <math>AI^{2}=13^{2}-13=156</math>. Let <math>AI\cap(ABC)=M</math>; notice <math>\triangle AOM</math> is isosceles and <math>\overline{OI}\perp\overline{AM}</math> which is enough to imply that <math>I</math> is the midpoint of <math>\overline{AM}</math>, and <math>M</math> itself is the midpoint of <math>II_{a}</math> where <math>I_{a}</math> is the <math>A</math>-excenter of <math>\triangle ABC</math>. Therefore, <math>AI=IM=MI_{a}=\sqrt{156}</math> and <cmath>AB\cdot AC=AI\cdot AI_{a}=3\cdot AI^{2}=\boxed{468}.</cmath>
  
Line 43: Line 243:
  
  
==Solution 2==
+
==Solution 3==
  
 
Denote <math>AB=a, AC=b, BC=c</math>. By the given condition, <math>\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6</math>, where <math>A</math> is the area of <math>\triangle{ABC}</math>.
 
Denote <math>AB=a, AC=b, BC=c</math>. By the given condition, <math>\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6</math>, where <math>A</math> is the area of <math>\triangle{ABC}</math>.
  
Moreover, since <math>OI\bot AI</math>, the second intersection of the line <math>AI</math> and <math>(ABC)</math> is the reflection of <math>A</math> about <math>I</math>, denote that as <math>D</math>. By the incenter-excenter lemma, <math>DI=BD=CD=\frac{AD}{2}\implies BD(a+b)=2BD\cdot c\implies a+b=2c</math>.
+
Moreover, since <math>OI\bot AI</math>, the second intersection of the line <math>AI</math> and <math>(ABC)</math> is the reflection of <math>A</math> about <math>I</math>, denote that as <math>D</math>. By the incenter-excenter lemma with Ptolemy's Theorem, <math>DI=BD=CD=\frac{AD}{2}\implies BD(a+b)=2BD\cdot c\implies a+b=2c</math>.
  
 
Thus, we have <math>\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c</math>. Now, we have <math>\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}</math>
 
Thus, we have <math>\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c</math>. Now, we have <math>\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}</math>
Line 53: Line 253:
 
~Bluesoul
 
~Bluesoul
  
==Solution 3==
+
==Solution 4 (Trig)==
  
 
Denote by <math>R</math> and <math>r</math> the circumradius and inradius, respectively.
 
Denote by <math>R</math> and <math>r</math> the circumradius and inradius, respectively.
  
 
First, we have
 
First, we have
\[
+
<cmath>\[
 
r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1)
 
r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1)
\]
+
\]</cmath>
  
 
Second, because <math>AI \perp IO</math>,
 
Second, because <math>AI \perp IO</math>,
Line 119: Line 319:
  
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 +
 +
 +
 +
 +
 +
==Solution 5 (Trig)==
 +
 +
[[File:2024AIMEIIProblem10.png|450px|center]]
 +
 +
 +
Firstly, we can construct the triangle <math>\triangle ABC</math> by drawing the circumcirlce (centered at <math>O</math> with radius <math>R = OA = 13</math>) and incircle (centered at <math>I</math> with radius <math>r = 6</math>). Next, from <math>A</math>, construct tangent lines to the incircle meeting the circumcirlce at point <math>B</math> and <math>C</math>, say, as shown in the diagram. By Euler's theorem (relating the distance between <math>O</math> and <math>I</math> to the circumradius and inradius), we have
 +
<cmath>
 +
OI = \sqrt{R^2 - 2rR} = \sqrt{13}.
 +
</cmath>
 +
This leads to
 +
<cmath>
 +
AI = \sqrt{R^2 - OI^2} = \sqrt{156}.
 +
</cmath>
 +
Let <math>P</math> be the point of tangency where the incircle meets the side <math>\overline{AC}</math>. Now we denote
 +
<cmath>
 +
\theta \coloneqq \angle BAI = \angle IAP \qquad \text{and} \qquad \phi \coloneqq \angle OAI.
 +
</cmath>
 +
Notice that <math>\angle BAO = \angle BAI - \angle OAI = \theta - \phi</math>. Finally, the crux move is to recognize
 +
<cmath>
 +
AB = 2R \cos(\theta - \phi) \qquad \text{and} \qquad AC = 2R \cos(\theta + \phi)
 +
</cmath>
 +
since <math>O</math> is the circumcenter. Then multiply these two expressions and apply the compound-angle formula to get
 +
\begin{aligned}
 +
AB \cdot AC
 +
&= 4R^2 \cos(\theta - \phi) \cos(\theta + \phi) \[0.3em]
 +
&= 4R^2\left(
 +
\cos^2\theta \cos^2\phi - \sin^2\theta \sin^2\phi
 +
\right) \[0.3em]
 +
&= 4\cos^2\theta(\underbrace{R\cos\phi}_{AI \, = \, \sqrt{156}})^2 - 4\sin^2\theta(\underbrace{R\sin\phi}_{OI \, = \, \sqrt{13}})^2 \[0.3em]
 +
&= 52 (12\cos^2\theta - \sin^2 \theta) \[0.3em]
 +
AB \cdot AC
 +
&= 52 (12 - 13\sin^2\theta),
 +
\end{aligned}
 +
where in the last equality, we make use of the substitution <math>\cos^2\theta = 1 - \sin^2\theta</math>. Looking at <math>\triangle AIP</math>, we learn that <math>\sin \theta = \frac{r}{AI} = \frac{6}{\sqrt{156}}</math> which means <math>\sin^2 \theta = \frac{3}{13}</math>. Hence we have
 +
<cmath>
 +
AB \cdot AC = 52\left( 12 - 13 \cdot \tfrac{3}{13} \right) = 52 \cdot 9 = \boxed{468}.
 +
</cmath>
 +
This completes the solution
 +
 +
-- VensL.
 +
 +
==Solution 6 (Close to Solution 3)==
 +
[[File:2024 AIME II 10.png|230px|right]]
 +
Denote <math>E = \odot ABC \cap AI, AB = c, AC = b, BC=a, r</math> is inradius.
 +
<cmath>AO = EO = R \implies AI = EI.</cmath>
 +
It is known that <math>\frac {AI}{EI} = \frac {b+c}{a} – 1 = 1 \implies b + c = 2a.</math>
 +
*[[Barycentric_coordinates | Points on bisectors]]
 +
<cmath>[ABC] =\frac{ (a+b+c) r}{2} = \frac {3ar}{2} = \frac {abc}{4R} \implies bc = 6Rr = \boxed{468}.</cmath>
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
 +
==Solution 7==
 +
 +
Call side <math>BC = a</math>, and similarly label the other sides. Note that <math>{OI}^2 = R^2 - 2Rr</math>. Also note that <math>AO = R</math>, so by the right angle, <math>AI = \sqrt{2Rr}</math>. However, we can double Angle Bisector theorem. The length of the angle bisector from A is <math>\sqrt{(bc)(1 - \frac{a^2}{(b+c)^2})}</math>. As a direct result, the length AI simplifies down to <math>\frac{\sqrt{(bc)(b+c-a)}}{\sqrt{{a+b+c}}}</math>.
 +
 +
Draw the incircle and call the tangent to side AB F. Then, <math>AF = \frac{b+c-a}{2}</math>. But this length, by Pythagorean, is <math>\sqrt{120}</math>, so <math>b+c-a = 2\sqrt{120}</math>.
 +
 +
Also note that the area of the triangle is <math>[ABC] = \frac{abc}{52}</math>, by <math>\frac{abc}{4S} = R</math>. By the incircle, we know that <math>\sin{\frac{A}{2}} = \frac{6}{\sqrt{156}}</math>, and similarly, <math>\cos{\frac{A}{2}} = \frac{\sqrt{120}}{\sqrt{156}}</math>. By double-angle, <math>\sin A = \frac{\sqrt{120}}{13}</math>. But the area of the triangle <math>[ABC]</math> is simply <math>\frac{1}{2}bc \sin A</math>, which is also <math>2\sqrt{120}bc</math>. But we know this is <math>abc</math> from above, so <math>a = 2\sqrt{120}</math>. As a direct result, <math>a+b+c =
 +
6\sqrt{120}</math>.
 +
 +
Apply this to the formula <math>\frac{\sqrt{(bc)(b+c-a)}}{\sqrt{a+b+c}}</math> listed above to get <math>2Rr = 156 = \frac{bc}{3}</math>, so <math>bc = 468</math>. We're done. - sepehr2010
 +
 +
==Solution 8==
 +
 +
Let the intersection of the <math>A</math>-angle bisector and the circumcircle be <math>M</math>, and denote the <math>A</math>-excenter as <math>I_A</math>. Denote the tangent to the incircle from <math>AC</math> as <math>E</math> and the tangent to the excircle from <math>AC</math> as <math>E_A</math>.
 +
 +
Notice that our perpendicular condition implies <math>AI = IM</math>, and Incenter-Excenter gives <math>IM = MI_A</math>. Thus we have <math>AI_A = 3AI</math>. From similar triangles we get <math>3(s-a) = 3AE = AE_A = s</math>. This implies <math>a = \frac23 S</math>.
 +
 +
Using areas we have that <math>\frac{abc}{4R} = rs</math>. Substituting gives <math>\frac{sbc}{6R} = rs \implies bc = 6Rr = \boxed{468}</math> and we're done. - thoom
 +
 +
==Solution 9==
 +
 +
We know that the area of <math>\triangle{ABC}</math> is equal to <math>\frac{abc}{4R}</math>, but is also equal to <math>\frac{a+b+c}{2}r</math>, where R is the circumcircle and r is the incircle. So, <math>abc = 156(a+b+c)</math>. Let's extend <math>AI</math> so it intersects the circumcircle of <math>\triangle{ABC}</math> at <math>P</math>. Something that we see is that <math>\triangle{AIO}</math> is congruent to <math>\triangle{PIO}</math>. Something else that we notice that since <math>AI</math> is the angle bisector of <math>\angle{A}</math>, <math>P</math> is the midpoint of arc <math>BC</math>. Now, let's try calculating <math>AI</math>. By Euler's Theorem, <math>OI^{2} = R^{2} - 2Rr</math> where R is the circumcircle and r is the incircle, so <math>OI = \sqrt{13}</math>. Using Pythagorean Theorem on <math>\triangle{AOI}</math> gives us <math>AI = 3\sqrt{39}</math> as we know that <math>AO</math> is 13.
 +
 +
However, since <math>\triangle{AOI}</math> is congruent to <math>\triangle{POI}</math>, <math>PI = 3\sqrt{39}</math>. Since we know that <math>P</math> is the midpoint of arc <math>BC</math>, we can apply the Incenter-Excenter Lemma to get that <math>BP = 3\sqrt{39}</math> and <math>CP = 3\sqrt{39}</math>. Now, we can use Ptolemy's Theorem on quadrilateral ABPC:
 +
 +
<math>(b+c)(3\sqrt{39}) = a \times 6\sqrt{39}</math>
 +
 +
However, we know that <math>abc = 156(a+b+c)</math>, so we can solve for a! So, <math>abc - 156c = 156a + 156b</math>. Dividing gives us <math>a = \frac{156b + 156c}{bc - 156}</math>. Substituting and cancelling into our equation,
 +
 +
<math>b+c = 2\frac{156b+156c}{bc-156}</math>.
 +
 +
Multiplying, <math>(b+c)(bc-156) = 2 \times 156(b+c).</math>
 +
 +
So, <math>(bc-156)</math> = 312. Our answer is 312 + 156 = <math>\boxed{468}</math>.
 +
 +
~aleyang
 +
 +
==Solution 10==
 +
We know by Euler's theorem <math>OI^2=R^2-2Rr.</math> Since <math>AO=R,</math> we have <math>AI=\sqrt{2Rr}.</math> Now, extend <math>AI</math> to meet <math>BC</math> at <math>A'</math> and the circumcircle of <math>\Delta ABC</math> at <math>L.</math> By the Incenter-Excenter lemma, <math>BL=CL=IL=r_a.</math> (Note that <math>OI \perp AL \rightarrow AI=IL=r_a\rightarrow r_a=\sqrt{2Rr}.</math>) Using Ptolemy in the cyclic quadrilateral <math>ABLC,</math> we have <math>c\cdot r_a+b\cdot r_a=2r_a\cdot a \iff \frac{b+c}{a}=2.</math> Also using the angle-bisector theorem we get, <math>\frac{c}{A'B}=\frac{b}{A'C}=\frac{b+c}{a}=2,</math> so call <math>c=2m, b=2n, A'B=m, A'C=n.</math> Since <math>\Delta AA'B \sim \Delta CA'L,</math> <math>\frac{AB}{r_a}=\frac{A'B}{A'L}\rightarrow LA'=\frac{r_a}{2}.</math> Thus, <math>AA'=\frac{3r_a}{2}</math> (as <math>AL=2r_a</math>), and <math>mn=AA'\cdot LA'=\frac{3r_a^2}{4}=\frac{3Rr}{2}.</math> In this problem, we want to find <math>4mn=6Rr,</math> yielding an answer of <math>\boxed{468}.</math>
 +
 +
~anduran
  
 
==Video Solution==
 
==Video Solution==
Line 126: Line 422:
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
  
 +
==Video Solution==
 +
 +
https://www.youtube.com/watch?v=pPBPfpo12j4
 +
 +
~MathProblemSolvingSkills.com
  
 
==See also==
 
==See also==

Revision as of 03:22, 1 December 2024

Problem

Let $\triangle ABC$ have circumcenter $O$ and incenter $I$ with $\overline{IA}\perp\overline{OI}$, circumradius $13$, and inradius $6$. Find $AB\cdot AC$.

Solution 1 (Similar Triangles and PoP)

Start off by (of course) drawing a diagram! Let $I$ and $O$ be the incenter and circumcenters of triangle $ABC$, respectively. Furthermore, extend $AI$ to meet $BC$ at $L$ and the circumcircle of triangle $ABC$ at $D$.

[asy] size(300); import olympiad; real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26); pair A = (c/3,8.65*c/10); draw(circumcircle(A,B,C)); pair I=incenter(A,B,C); pair O=circumcenter(A,B,C); pair L=extension(A,I,C,B); dot(I^^O^^A^^B^^C^^D^^L); draw(A--L); draw(A--D); path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} draw(C--B--D--cycle); draw(A--C--B); draw(A--B); draw(B--I--C^^A--I); draw(incircle(A,B,C)); label("$B$",B,SW); label("$C$",C,SE); label("$A$",A,N); label("$D$",D,S); label("$I$",I,NW); label("$L$",L,SW); label("$O$",O,E); label("$\alpha$",B,5*dir(midangle(A,B,I)),fontsize(8)); label("$\alpha$",B,5*dir(midangle(I,B,C)),fontsize(8)); label("$\beta$",C,12*dir(midangle(B,C,I)),fontsize(8)); label("$\beta$",C,12*dir(midangle(I,C,A)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8));  draw(I--O); draw(A--O); draw(rightanglemark(A,I,O)); [/asy]


We'll tackle the initial steps of the problem in two different manners, both leading us to the same final calculations.

Solution 1.1

Since $I$ is the incenter, $\angle BAL \cong \angle DAC$. Furthermore, $\angle ABC$ and $\angle ADC$ are both subtended by the same arc $AC$, so $\angle ABC \cong \angle ADC.$ Therefore by AA similarity, $\triangle ABL \sim \triangle ADC$. From this we can say that \[\frac{AB}{AD} = \frac{AL}{AC} \implies AB \cdot AC = AL \cdot AD\]

Since $AD$ is a chord of the circle and $OI$ is a perpendicular from the center to that chord, $OI$ must bisect $AD$. This can be seen by drawing $OD$ and recognizing that this creates two congruent right triangles. Therefore, \[AD = 2 \cdot ID \implies AB \cdot AC = 2 \cdot AL \cdot ID\]

We have successfully represented $AB \cdot AC$ in terms of $AL$ and $ID$. Solution 1.2 will explain an alternate method to get a similar relationship, and then we'll rejoin and finish off the solution.

Solution 1.2

$\angle ALB \cong \angle DLC$ by vertical angles and $\angle LBA \cong \angle CDA$ because both are subtended by arc $AC$. Thus $\triangle ABL \sim \triangle CDL$.

Thus \[\frac{AB}{CD} = \frac{AL}{CL} \implies AB = CD \cdot \frac{AL}{CL}\]

Symmetrically, we get $\triangle ALC \sim \triangle BLD$, so \[\frac{AC}{BD} = \frac{AL}{BL} \implies AC = BD \cdot \frac{AL}{BL}\]

Substituting, we get \[AB \cdot AC = CD \cdot \frac{AL}{CL} \cdot BD \cdot \frac{AL}{BL}\]

Lemma 1: BD = CD = ID

Proof:

We commence angle chasing: we know $\angle DBC \cong DAC = \gamma$. Therefore \[\angle IBD = \alpha + \gamma\]. Looking at triangle $ABI$, we see that $\angle IBA = \alpha$, and $\angle BAI = \gamma$. Therefore because the sum of the angles must be $180$, $\angle BIA = 180-\alpha - \gamma$. Now $AD$ is a straight line, so \[\angle BID = 180-\angle BIA = \alpha+\gamma\]. Since $\angle IBD = \angle BID$, triangle $IBD$ is isosceles and thus $ID = BD$.

A similar argument should suffice to show $CD = ID$ by symmetry, so thus $ID = BD = CD$.

Now we regroup and get \[CD \cdot \frac{AL}{CL} \cdot BD \cdot \frac{AL}{BL} = ID^2 \cdot \frac{AL^2}{BL \cdot CL}\]

Now note that $BL$ and $CL$ are part of the same chord in the circle, so we can use Power of a point to express their product differently. \[BL \cdot CL = AL \cdot LD \implies AB \cdot AC = ID^2 \cdot \frac{AL}{LD}\]

Solution 1 (Continued)

Now we have some sort of expression for $AB \cdot AC$ in terms of $ID$ and $AL$. Let's try to find $AL$ first.

Drop an altitude from $D$ to $BC$, $I$ to $AC$, and $I$ to $BC$:

[asy] size(300); import olympiad; real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26), E = (c/2-0.01,0); pair A = (c/3,8.65*c/10); pair F = (2*c/3-0.14, 4-0.29); pair G = (c/2-0.68,0); draw(circumcircle(A,B,C)); pair I=incenter(A,B,C); pair O=circumcenter(A,B,C); pair L=extension(A,I,C,B); dot(I^^O^^A^^B^^C^^D^^L^^E^^F^^G); draw(A--L); draw(A--D); draw(D--E); draw(I--F); draw(I--G); path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} draw(C--B--D--cycle); draw(A--C--B); draw(A--B); draw(B--I--C^^A--I); draw(incircle(A,B,C)); label("$B$",B,SW); label("$C$",C,SE); label("$A$",A,N); label("$D$",D,S); label("$I$",I,NW); label("$L$",L,SW); label("$O$",O,E); label("$E$",E,N); label("$F$",F,NE); label("$G$",G,SW); label("$\alpha$",B,5*dir(midangle(A,B,I)),fontsize(8)); label("$\alpha$",B,5*dir(midangle(I,B,C)),fontsize(8)); label("$\beta$",C,12*dir(midangle(B,C,I)),fontsize(8)); label("$\beta$",C,12*dir(midangle(I,C,A)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8));   draw(I--O); draw(A--O); draw(rightanglemark(A,I,O)); draw(rightanglemark(B,E,D)); draw(rightanglemark(I,F,A)); draw(rightanglemark(I,G,L)); [/asy]

Since $\angle DBE \cong \angle IAF$ and $\angle BED \cong \angle IFA$, $\triangle BDE \sim \triangle AIF$.

Furthermore, we know $BD = ID$ and $AI = ID$, so $BD = AI$. Since we have two right similar triangles and the corresponding sides are equal, these two triangles are actually congruent: this implies that $DE = IF = 6$ since $IF$ is the inradius.

Now notice that $\triangle IGL \sim \triangle DEL$ because of equal vertical angles and right angles. Furthermore, $IG$ is the inradius so it's length is $6$, which equals the length of $DE$. Therefore these two triangles are congruent, so $IL = DL$.

Since $IL+DL = ID$, $ID = 2 \cdot IL$. Furthermore, $AL = AI + IL = ID + IL = 3 \cdot IL$.

We can now plug back into our initial equations for $AB \cdot AC$:

From $1.1$, $AB \cdot AC = 2 \cdot AL \cdot ID = 2 \cdot 3 \cdot IL \cdot 2 \cdot IL$

\[\implies AB \cdot AC = 3 \cdot (2 \cdot IL) \cdot (2 \cdot IL) = 3 \cdot ID^2\]

Alternatively, from $1.2$, $AB \cdot AC = ID^2 \cdot \frac{AL}{DL}$ \[\implies AB \cdot AC = ID^2  \cdot \frac{3 \cdot IL}{IL} = 3 \cdot ID^2\]

Now all we need to do is find $ID$.

The problem now becomes very simple if one knows Euler's Formula for the distance between the incenter and the circumcenter of a triangle. This formula states that $OI^2 = R(R-2r)$, where $R$ is the circumradius and $r$ is the inradius. We will prove this formula first, but if you already know the proof, skip this part.

Theorem: in any triangle, let $d$ be the distance from the circumcenter to the incenter of the triangle. Then $d^2 = R \cdot (R-2r)$, where $R$ is the circumradius of the triangle and $r$ is the inradius of the triangle.

Proof:

Construct the following diagram:


[asy] size(300); import olympiad; real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26), E = (c/2-0.01,0); pair A = (c/3,8.65*c/10); pair F = (2*c/3-0.14, 4-0.29); pair G = (c/2-0.68,0); draw(circumcircle(A,B,C)); pair I=incenter(A,B,C); pair O=circumcenter(A,B,C); pair L=extension(A,I,C,B); dot(I^^O^^A^^B^^C^^D^^L^^F); draw(A--L); draw(A--D); draw(I--F); path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} draw(C--B--D--cycle); draw(A--C--B); draw(A--B); draw(A--I); draw(incircle(A,B,C)); label("$B$",B,SW); label("$C$",C,SE); label("$A$",A,N); label("$D$",D,S); label("$I$",I,NW); label("$L$",L,SW); label("$O$",O,S); label("$F$",F,NE); label("$\gamma$",A,5*dir(midangle(B,A,I)),fontsize(8)); label("$\gamma$",A,5*dir(midangle(I,A,C)),fontsize(8));  pair H = (10*c/8-1.46,2*c/3-1.85), J = (-0.55,1.4); dot(H^^J); label("$H$", H, E); label("$J$", J, W);   draw(I--O); draw(I--H); draw(I--J); draw(rightanglemark(I,F,A)); [/asy]


Let $OI = d$, $OH = R$, $IF = r$. By the Power of a Point, $IH \cdot IJ = AI \cdot ID$. $IH = R+d$ and $IJ = R-d$, so \[(R+d) \cdot (R-d) = AI \cdot ID = AI \cdot CD\]

Now consider $\triangle ACD$. Since all three points lie on the circumcircle of $\triangle ABC$, the two triangles have the same circumcircle. Thus we can apply law of sines and we get $\frac{CD}{\sin(\angle DAC)} = 2R$. This implies

\[(R+d)\cdot (R-d) = AI \cdot 2R \cdot \sin(\angle DAC)\]

Also, $\sin(\angle DAC)) = \sin(\angle IAF))$, and $\triangle IAF$ is right. Therefore \[\sin(\angle IAF) = \frac{IF}{AI} = \frac{r}{AI}\]

Plugging in, we have

\[(R+d)\cdot (R-d) = AI \cdot 2R \cdot \frac{r}{AI} = 2R \cdot r\]

Thus \[R^2-d^2 = 2R \cdot r \implies d^2 = R \cdot (R-2r)\]



Now we can finish up our solution. We know that $AB \cdot AC = 3 \cdot ID^2$. Since $ID = AI$, $AB \cdot AC = 3 \cdot AI^2$. Since $\triangle AOI$ is right, we can apply the pythagorean theorem: $AI^2 = AO^2-OI^2 = 13^2-OI^2$.

Plugging in from Euler's formula, $OI^2 = 13 \cdot (13 - 2 \cdot 6) = 13$.

Thus $AI^2 = 169-13 = 156$.

Finally $AB \cdot AC = 3 \cdot AI^2 = 3 \cdot 156 = \textbf{468}$.


~KingRavi

Solution 2 (Excenters)

By Euler's formula $OI^{2}=R(R-2r)$, we have $OI^{2}=13(13-12)=13$. Thus, by the Pythagorean theorem, $AI^{2}=13^{2}-13=156$. Let $AI\cap(ABC)=M$; notice $\triangle AOM$ is isosceles and $\overline{OI}\perp\overline{AM}$ which is enough to imply that $I$ is the midpoint of $\overline{AM}$, and $M$ itself is the midpoint of $II_{a}$ where $I_{a}$ is the $A$-excenter of $\triangle ABC$. Therefore, $AI=IM=MI_{a}=\sqrt{156}$ and \[AB\cdot AC=AI\cdot AI_{a}=3\cdot AI^{2}=\boxed{468}.\]

Note that this problem is extremely similar to 2019 CIME I/14.


Solution 3

Denote $AB=a, AC=b, BC=c$. By the given condition, $\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6$, where $A$ is the area of $\triangle{ABC}$.

Moreover, since $OI\bot AI$, the second intersection of the line $AI$ and $(ABC)$ is the reflection of $A$ about $I$, denote that as $D$. By the incenter-excenter lemma with Ptolemy's Theorem, $DI=BD=CD=\frac{AD}{2}\implies BD(a+b)=2BD\cdot c\implies a+b=2c$.

Thus, we have $\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c$. Now, we have $\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}$

~Bluesoul

Solution 4 (Trig)

Denote by $R$ and $r$ the circumradius and inradius, respectively.

First, we have \[ r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1) \]

Second, because $AI \perp IO$, AI=AOcosIAO=AOcos(90CA2)=AOsin(C+A2)=Rsin(C+180BC2)=RcosBC2.

Thus, r=AIsinA2=RsinA2cosBC2(2)

Taking $(1) - (2)$, we get \[ 4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} . \]

We have 2sinB2sinC2=cosB+C2+cosBC2.

Plugging this into the above equation, we get \[ \cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3) \]

Now, we analyze Equation (2). We have rR=sinA2cosBC2=sin180BC2cosBC2=cosB+C2cosBC2(4)

Solving Equations (3) and (4), we get \[ \cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm} \cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5) \]

Now, we compute $AB \cdot AC$. We have ABAC=2RsinC2RsinB=2R2(cos(B+C)+cos(BC))=2R2((2(cosB+C2)21)+(2(cosBC2)21))=6Rr=(468)  where the first equality follows from the law of sines, the fourth equality follows from (5).


~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)



Solution 5 (Trig)

2024AIMEIIProblem10.png


Firstly, we can construct the triangle $\triangle ABC$ by drawing the circumcirlce (centered at $O$ with radius $R = OA = 13$) and incircle (centered at $I$ with radius $r = 6$). Next, from $A$, construct tangent lines to the incircle meeting the circumcirlce at point $B$ and $C$, say, as shown in the diagram. By Euler's theorem (relating the distance between $O$ and $I$ to the circumradius and inradius), we have \[OI = \sqrt{R^2 - 2rR} = \sqrt{13}.\] This leads to \[AI = \sqrt{R^2 - OI^2} = \sqrt{156}.\] Let $P$ be the point of tangency where the incircle meets the side $\overline{AC}$. Now we denote \[\theta \coloneqq \angle BAI = \angle IAP \qquad \text{and} \qquad \phi \coloneqq \angle OAI.\] Notice that $\angle BAO = \angle BAI - \angle OAI = \theta - \phi$. Finally, the crux move is to recognize \[AB = 2R \cos(\theta - \phi) \qquad \text{and} \qquad AC = 2R \cos(\theta + \phi)\] since $O$ is the circumcenter. Then multiply these two expressions and apply the compound-angle formula to get ABAC=4R2cos(θϕ)cos(θ+ϕ)=4R2(cos2θcos2ϕsin2θsin2ϕ)=4cos2θ(RcosϕAI=156)24sin2θ(RsinϕOI=13)2=52(12cos2θsin2θ)ABAC=52(1213sin2θ), where in the last equality, we make use of the substitution $\cos^2\theta = 1 - \sin^2\theta$. Looking at $\triangle AIP$, we learn that $\sin \theta = \frac{r}{AI} = \frac{6}{\sqrt{156}}$ which means $\sin^2 \theta = \frac{3}{13}$. Hence we have \[AB \cdot AC = 52\left( 12 - 13 \cdot \tfrac{3}{13} \right) = 52 \cdot 9 = \boxed{468}.\] This completes the solution

-- VensL.

Solution 6 (Close to Solution 3)

2024 AIME II 10.png

Denote $E = \odot ABC \cap AI, AB = c, AC = b, BC=a, r$ is inradius. \[AO = EO = R \implies AI = EI.\] It is known that $\frac {AI}{EI} = \frac {b+c}{a} – 1 = 1 \implies b + c = 2a.$

\[[ABC] =\frac{ (a+b+c) r}{2} = \frac {3ar}{2} = \frac {abc}{4R} \implies bc = 6Rr = \boxed{468}.\] vladimir.shelomovskii@gmail.com, vvsss

Solution 7

Call side $BC = a$, and similarly label the other sides. Note that ${OI}^2 = R^2 - 2Rr$. Also note that $AO = R$, so by the right angle, $AI = \sqrt{2Rr}$. However, we can double Angle Bisector theorem. The length of the angle bisector from A is $\sqrt{(bc)(1 - \frac{a^2}{(b+c)^2})}$. As a direct result, the length AI simplifies down to $\frac{\sqrt{(bc)(b+c-a)}}{\sqrt{{a+b+c}}}$.

Draw the incircle and call the tangent to side AB F. Then, $AF = \frac{b+c-a}{2}$. But this length, by Pythagorean, is $\sqrt{120}$, so $b+c-a = 2\sqrt{120}$.

Also note that the area of the triangle is $[ABC] = \frac{abc}{52}$, by $\frac{abc}{4S} = R$. By the incircle, we know that $\sin{\frac{A}{2}} = \frac{6}{\sqrt{156}}$, and similarly, $\cos{\frac{A}{2}} = \frac{\sqrt{120}}{\sqrt{156}}$. By double-angle, $\sin A = \frac{\sqrt{120}}{13}$. But the area of the triangle $[ABC]$ is simply $\frac{1}{2}bc \sin A$, which is also $2\sqrt{120}bc$. But we know this is $abc$ from above, so $a = 2\sqrt{120}$. As a direct result, $a+b+c =  6\sqrt{120}$.

Apply this to the formula $\frac{\sqrt{(bc)(b+c-a)}}{\sqrt{a+b+c}}$ listed above to get $2Rr = 156 = \frac{bc}{3}$, so $bc = 468$. We're done. - sepehr2010

Solution 8

Let the intersection of the $A$-angle bisector and the circumcircle be $M$, and denote the $A$-excenter as $I_A$. Denote the tangent to the incircle from $AC$ as $E$ and the tangent to the excircle from $AC$ as $E_A$.

Notice that our perpendicular condition implies $AI = IM$, and Incenter-Excenter gives $IM = MI_A$. Thus we have $AI_A = 3AI$. From similar triangles we get $3(s-a) = 3AE = AE_A = s$. This implies $a = \frac23 S$.

Using areas we have that $\frac{abc}{4R} = rs$. Substituting gives $\frac{sbc}{6R} = rs \implies bc = 6Rr = \boxed{468}$ and we're done. - thoom

Solution 9

We know that the area of $\triangle{ABC}$ is equal to $\frac{abc}{4R}$, but is also equal to $\frac{a+b+c}{2}r$, where R is the circumcircle and r is the incircle. So, $abc = 156(a+b+c)$. Let's extend $AI$ so it intersects the circumcircle of $\triangle{ABC}$ at $P$. Something that we see is that $\triangle{AIO}$ is congruent to $\triangle{PIO}$. Something else that we notice that since $AI$ is the angle bisector of $\angle{A}$, $P$ is the midpoint of arc $BC$. Now, let's try calculating $AI$. By Euler's Theorem, $OI^{2} = R^{2} - 2Rr$ where R is the circumcircle and r is the incircle, so $OI = \sqrt{13}$. Using Pythagorean Theorem on $\triangle{AOI}$ gives us $AI = 3\sqrt{39}$ as we know that $AO$ is 13.

However, since $\triangle{AOI}$ is congruent to $\triangle{POI}$, $PI = 3\sqrt{39}$. Since we know that $P$ is the midpoint of arc $BC$, we can apply the Incenter-Excenter Lemma to get that $BP = 3\sqrt{39}$ and $CP = 3\sqrt{39}$. Now, we can use Ptolemy's Theorem on quadrilateral ABPC:

$(b+c)(3\sqrt{39}) = a \times 6\sqrt{39}$

However, we know that $abc = 156(a+b+c)$, so we can solve for a! So, $abc - 156c = 156a + 156b$. Dividing gives us $a = \frac{156b + 156c}{bc - 156}$. Substituting and cancelling into our equation,

$b+c = 2\frac{156b+156c}{bc-156}$.

Multiplying, $(b+c)(bc-156) = 2 \times 156(b+c).$

So, $(bc-156)$ = 312. Our answer is 312 + 156 = $\boxed{468}$.

~aleyang

Solution 10

We know by Euler's theorem $OI^2=R^2-2Rr.$ Since $AO=R,$ we have $AI=\sqrt{2Rr}.$ Now, extend $AI$ to meet $BC$ at $A'$ and the circumcircle of $\Delta ABC$ at $L.$ By the Incenter-Excenter lemma, $BL=CL=IL=r_a.$ (Note that $OI \perp AL \rightarrow AI=IL=r_a\rightarrow r_a=\sqrt{2Rr}.$) Using Ptolemy in the cyclic quadrilateral $ABLC,$ we have $c\cdot r_a+b\cdot r_a=2r_a\cdot a \iff \frac{b+c}{a}=2.$ Also using the angle-bisector theorem we get, $\frac{c}{A'B}=\frac{b}{A'C}=\frac{b+c}{a}=2,$ so call $c=2m, b=2n, A'B=m, A'C=n.$ Since $\Delta AA'B \sim \Delta CA'L,$ $\frac{AB}{r_a}=\frac{A'B}{A'L}\rightarrow LA'=\frac{r_a}{2}.$ Thus, $AA'=\frac{3r_a}{2}$ (as $AL=2r_a$), and $mn=AA'\cdot LA'=\frac{3r_a^2}{4}=\frac{3Rr}{2}.$ In this problem, we want to find $4mn=6Rr,$ yielding an answer of $\boxed{468}.$

~anduran

Video Solution

https://youtu.be/_zxBvojcAQ4

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution

https://www.youtube.com/watch?v=pPBPfpo12j4

~MathProblemSolvingSkills.com

See also

2024 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png