Difference between revisions of "2002 AIME I Problems/Problem 12"
m |
(solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | + | Iterating <math>F</math> we get: | |
+ | <math> | ||
+ | \begin{align*} | ||
+ | F(z) &= \frac{z+i}{z-i}\ | ||
+ | F(F(z)) &= \frac{\frac{z+i}{z-i}+i}{\frac{z+i}{z-i}-i} = \frac{(z+i)+i(z-i)}{(z+i)-i(z-i)}= \frac{z+i+zi+1}{z+i-zi-1}= \frac{(z+1)(i+1)}{(z-1)(1-i)}\ | ||
+ | &= \frac{(z+1)(i+1)^2}{(z-1)(1^2+1^2)}= \frac{(z+1)(2i)}{(z-1)(2)}= \frac{z+1}{z-1}i\ | ||
+ | F(F(F(z))) &= \frac{\frac{z+1}{z-1}i+i}{\frac{z+1}{z-1}i-i} = \frac{\frac{z+1}{z-1}+1}{\frac{z+1}{z-1}-1} = \frac{(z+1)+(z-1)}{(z+1)-(z-1)} = \frac{2z}{2} = z. | ||
+ | \end{align*} | ||
+ | </math> | ||
+ | |||
+ | From this, it follows that <math>z_{k+3} = z_k</math>, for all <math>k</math>. Thus | ||
+ | <math>z_{2002} = z_{3\cdot 667+1} = z_1 = \frac{z_0+i}{z_0-i} = \frac{(\frac{1}{137}+i)+i}{(\frac{1}{137}+i)-i}= \frac{\frac{1}{137}+2i}{\frac{1}{137}}= 1+274i.</math> | ||
+ | |||
+ | Thus <math>a+b = 1+274 = \boxed{275}</math>. | ||
== See also == | == See also == | ||
{{AIME box|year=2002|n=I|num-b=11|num-a=13}} | {{AIME box|year=2002|n=I|num-b=11|num-a=13}} |
Revision as of 22:20, 4 May 2008
Problem
Let for all complex numbers , and let for all positive integers . Given that and , where and are real numbers, find .
Solution
Iterating we get:
$
From this, it follows that , for all . Thus
Thus .
See also
2002 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |