Difference between revisions of "1995 AIME Problems/Problem 12"

m
(incomplete; both solutions written by 4everwise)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Pyramid <math>\displaystyle OABCD</math> has square base <math>\displaystyle ABCD,</math> congruent edges <math>\displaystyle \overline{OA}, \overline{OB}, \overline{OC},</math> and <math>\displaystyle \overline{OD},</math> and <math>\displaystyle \angle AOB=45^\circ.</math>  Let <math>\displaystyle \theta</math> be the measure of the dihedral angle formed by faces <math>\displaystyle OAB</math> and <math>\displaystyle OBC.</math>  Given that <math>\displaystyle \cos \theta=m+\sqrt{n},</math> where <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> are integers, find <math>\displaystyle m+n.</math>
+
[[Pyramid]] <math>OABCD</math> has square base <math>ABCD,</math> congruent edges <math>\overline{OA}, \overline{OB}, \overline{OC},</math> and <math>\overline{OD},</math> and <math>\angle AOB=45^\circ.</math>  Let <math>\theta</math> be the measure of the [[dihedral angle]] formed by faces <math>OAB</math> and <math>OBC.</math>  Given that <math>\cos \theta=m+\sqrt{n},</math> where <math>m_{}</math> and <math>n_{}</math> are integers, find <math>m+n.</math>
  
 +
__TOC__
 
== Solution ==
 
== Solution ==
 +
=== Solution 1 (trigonometry) ===
 +
<center><asy>
 +
import three;
 +
triple A = (1,0,0), B=(0,0,0), C=(0,1,0), D=(1,1,0), O=(1,1,(1+2^.5)^.5)/2^.5, P=O*(18^.5-2)/5; /* , P = foot(A, O, B) */
 +
draw(A--B--C--D--A--O--B--O--C--O--D); D(A--P--C);
 +
</asy></center>
 +
 +
{{incomplete|Asymptote}}
 +
 +
The angle <math>\theta</math> is the angle formed by two [[perpendicular]]s drawn to <math>BO</math>, one on the plane determined by <math>OAB</math> and the other by <math>OBC</math>. Let the perpendiculars from <math>A</math> and <math>C</math> to <math>\overline{OB}</math> meet <math>\overline{OB}</math> at <math>P.</math> [[Without loss of generality]], let <math>AP = 1.</math> It follows that <math>OP = AP = 1,</math> <math>OB = OA = \sqrt {2},</math> and <math>AB = \sqrt {4 - 2\sqrt {2}}.</math> Therefore, <math>AC = \sqrt {8 - 4\sqrt {2}}.</math>
 +
 +
From the [[Law of Cosines]], <math>AC^{2} = AP^{2} + PC^{2} - 2(AP)(PC)\cos \theta,</math> so
 +
 +
<cmath> 8 - 4\sqrt {2} = 1 + 1 - 2\cos \theta \Longrightarrow \cos \theta = - 3 + 2\sqrt {2} = - 3 + \sqrt{8}.</cmath>
 +
 +
Thus <math>m + n = \boxed{005}</math>.
 +
 +
=== Solution 2 (analytic/vectors) ===
 +
Without loss of generality, place the pyramid in a 3-dimensional coordinate system such that <math>A = (1,0,0),</math> <math>B = (0,1,0),</math> <math>C = ( - 1,0,0),</math> <math>D = (0, - 1,0),</math> and <math>O = (0,0,z),</math> where <math>z</math> is unknown.
 +
 +
We first find <math>z.</math> Note that
 +
 +
<cmath>\overrightarrow{OA}\cdot \overrightarrow{OB} = \parallel \overrightarrow{OA}\parallel \parallel \overrightarrow{OB}\parallel \cos 45^\circ.</cmath>
 +
 +
Since <math>\overrightarrow{OA} =\, <1,0, - z></math> and <math>\overrightarrow{OB} =\, <0,1, - z> ,</math> this simplifies to
 +
 +
<cmath>z^{2}\sqrt {2} = 1 + z^{2}\implies z^{2} = 1 + \sqrt {2}.</cmath>
 +
 +
Now let's find <math>\cos \theta.</math> Let <math>\vec{u}</math> and <math>\vec{v}</math> be normal vectors to the planes containing faces <math>OAB</math> and <math>OBC,</math> respectively. It follows that letting
 +
 +
<cmath>\vec{u}\cdot \vec{v} = \parallel \vec{u}\parallel \parallel \vec{v}\parallel \cos \theta</cmath>
 +
 +
will allow us to solve for <math>\cos \theta.</math> A cross product yields
 +
 +
<cmath>\vec{u} = \overrightarrow{OA}\times \overrightarrow{OB} = \left| \begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \
 +
1 & 0 & - z \
 +
0 & 1 & - z \end{array}\right| =\, < z,z,1 > .</cmath>
 +
 +
Similarly,
 +
 +
<cmath>\vec{v} = \overrightarrow{OB}\times \overrightarrow{OC} - \left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \
 +
0 & 1 & - z \
 +
- 1 & 0 & - z \end{array}\right| =\, < - z,z,1 > .</cmath>
 +
 +
Hence, taking the dot product of <math>\vec{u}</math> and <math>\vec{v}</math> yields
 +
 +
<cmath>- z^{2} + z^{2} + 1 = 1 = (\sqrt {1 + 2z^{2}})^{2}\cos \theta.</cmath>
 +
 +
Simplifying,
 +
 +
<cmath>\cos \theta = \frac {1}{3 + 2\sqrt {2}} = 3 - 2\sqrt {2} = 3 - \sqrt {8}.</cmath>
 +
 +
Flipping the signs (we found the cosine of the supplement angle) yields <math>\cos \theta = - 3 + \sqrt {8},</math> so the answer is <math>\boxed{005}</math>.
  
 
== See also ==
 
== See also ==
* [[1995_AIME_Problems/Problem_11|Previous Problem]]
+
{{AIME box|year=1995|num-b=11|num-a=13|t=394527}}
* [[1995_AIME_Problems/Problem_13|Next Problem]]
+
 
* [[1995 AIME Problems]]
+
[[Category:Intermediate Geometry Problems]]

Revision as of 20:35, 29 July 2008

Problem

Pyramid $OABCD$ has square base $ABCD,$ congruent edges $\overline{OA}, \overline{OB}, \overline{OC},$ and $\overline{OD},$ and $\angle AOB=45^\circ.$ Let $\theta$ be the measure of the dihedral angle formed by faces $OAB$ and $OBC.$ Given that $\cos \theta=m+\sqrt{n},$ where $m_{}$ and $n_{}$ are integers, find $m+n.$

Solution

Solution 1 (trigonometry)

[asy] import three; triple A = (1,0,0), B=(0,0,0), C=(0,1,0), D=(1,1,0), O=(1,1,(1+2^.5)^.5)/2^.5, P=O*(18^.5-2)/5; /* , P = foot(A, O, B) */ draw(A--B--C--D--A--O--B--O--C--O--D); D(A--P--C); [/asy]

Template:Incomplete

The angle $\theta$ is the angle formed by two perpendiculars drawn to $BO$, one on the plane determined by $OAB$ and the other by $OBC$. Let the perpendiculars from $A$ and $C$ to $\overline{OB}$ meet $\overline{OB}$ at $P.$ Without loss of generality, let $AP = 1.$ It follows that $OP = AP = 1,$ $OB = OA = \sqrt {2},$ and $AB = \sqrt {4 - 2\sqrt {2}}.$ Therefore, $AC = \sqrt {8 - 4\sqrt {2}}.$

From the Law of Cosines, $AC^{2} = AP^{2} + PC^{2} - 2(AP)(PC)\cos \theta,$ so

\[8 - 4\sqrt {2} = 1 + 1 - 2\cos \theta \Longrightarrow \cos \theta = - 3 + 2\sqrt {2} = - 3 + \sqrt{8}.\]

Thus $m + n = \boxed{005}$.

Solution 2 (analytic/vectors)

Without loss of generality, place the pyramid in a 3-dimensional coordinate system such that $A = (1,0,0),$ $B = (0,1,0),$ $C = ( - 1,0,0),$ $D = (0, - 1,0),$ and $O = (0,0,z),$ where $z$ is unknown.

We first find $z.$ Note that

\[\overrightarrow{OA}\cdot \overrightarrow{OB} = \parallel \overrightarrow{OA}\parallel \parallel \overrightarrow{OB}\parallel \cos 45^\circ.\]

Since $\overrightarrow{OA} =\, <1,0, - z>$ and $\overrightarrow{OB} =\, <0,1, - z> ,$ this simplifies to

\[z^{2}\sqrt {2} = 1 + z^{2}\implies z^{2} = 1 + \sqrt {2}.\]

Now let's find $\cos \theta.$ Let $\vec{u}$ and $\vec{v}$ be normal vectors to the planes containing faces $OAB$ and $OBC,$ respectively. It follows that letting

\[\vec{u}\cdot \vec{v} = \parallel \vec{u}\parallel \parallel \vec{v}\parallel \cos \theta\]

will allow us to solve for $\cos \theta.$ A cross product yields

\[\vec{u} = \overrightarrow{OA}\times \overrightarrow{OB} = \left| \begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & - z \\ 0 & 1 & - z \end{array}\right| =\, < z,z,1 > .\]

Similarly,

\[\vec{v} = \overrightarrow{OB}\times \overrightarrow{OC} - \left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & - z \\ - 1 & 0 & - z \end{array}\right| =\, < - z,z,1 > .\]

Hence, taking the dot product of $\vec{u}$ and $\vec{v}$ yields

\[- z^{2} + z^{2} + 1 = 1 = (\sqrt {1 + 2z^{2}})^{2}\cos \theta.\]

Simplifying,

\[\cos \theta = \frac {1}{3 + 2\sqrt {2}} = 3 - 2\sqrt {2} = 3 - \sqrt {8}.\]

Flipping the signs (we found the cosine of the supplement angle) yields $\cos \theta = - 3 + \sqrt {8},$ so the answer is $\boxed{005}$.

See also

1995 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions