Difference between revisions of "2000 AMC 10 Problems/Problem 11"

(Problem)
m (Solution)
Line 9: Line 9:
 
Two prime numbers between <math>4</math> and <math>18</math> are both odd.
 
Two prime numbers between <math>4</math> and <math>18</math> are both odd.
  
odd*odd=odd.
+
<math>\text{odd}\cdot \text{odd}=\text{odd}</math>
  
odd-odd-odd=odd.
+
<math>\text{odd}-\text{odd}-\text{odd}=\text{odd}</math>
  
 
Thus, we can discard the even choices.
 
Thus, we can discard the even choices.
  
<math>ab-a-b=(a-1)(b-1)-1</math>.
+
<math>ab-a-b=(a-1)(b-1)-1</math>
  
<math>(a-1)(b-1)-1=21,119,231</math>.
+
Both <math>a-1</math> and <math>b-1</math> are even, so one more than <math>ab-a-b</math> is a multiple of four.
  
Both of these factors are even, so the number +1 must be a multiple of <math>4</math>.
+
<math>119</math> is the only possible choice.
  
<math>120</math> is the only possiblity.
+
<math>11,13</math> satisfy this, <math>11\cdot 13-11-13=143-24=119</math>.
  
<math>11,13</math> satisfy this, <math>11*13-11-13=143-24=119</math>.
+
<math>\boxed{\text{C}}</math>
 
 
C
 
  
 
==See Also==
 
==See Also==
  
 
{{AMC10 box|year=2000|num-b=10|num-a=12}}
 
{{AMC10 box|year=2000|num-b=10|num-a=12}}

Revision as of 20:44, 9 January 2009

Problem

Two different prime numbers between $4$ and $18$ are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?

$\mathrm{(A)}\ 21 \qquad\mathrm{(B)}\ 60 \qquad\mathrm{(C)}\ 119 \qquad\mathrm{(D)}\ 180 \qquad\mathrm{(E)}\ 231$

Solution

Two prime numbers between $4$ and $18$ are both odd.

$\text{odd}\cdot \text{odd}=\text{odd}$

$\text{odd}-\text{odd}-\text{odd}=\text{odd}$

Thus, we can discard the even choices.

$ab-a-b=(a-1)(b-1)-1$

Both $a-1$ and $b-1$ are even, so one more than $ab-a-b$ is a multiple of four.

$119$ is the only possible choice.

$11,13$ satisfy this, $11\cdot 13-11-13=143-24=119$.

$\boxed{\text{C}}$

See Also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions