Difference between revisions of "Bezout's Lemma"
(Generalized statement/proof to hold for any nonzero integers) |
(Added proof that g minimal) |
||
Line 1: | Line 1: | ||
'''Bezout's Lemma''' states that if <math>x</math> and <math>y</math> are nonzero integers and <math>g = \gcd(x,y)</math>, then there exist integers <math>\alpha</math> and <math>\beta</math> such that <math>x\alpha+y\beta=g</math>. In other words, there exists a linear combination of <math>x</math> and <math>y</math> equal to <math>g</math>. | '''Bezout's Lemma''' states that if <math>x</math> and <math>y</math> are nonzero integers and <math>g = \gcd(x,y)</math>, then there exist integers <math>\alpha</math> and <math>\beta</math> such that <math>x\alpha+y\beta=g</math>. In other words, there exists a linear combination of <math>x</math> and <math>y</math> equal to <math>g</math>. | ||
+ | |||
+ | Furthermore, <math>g</math> is the smallest positive integer that can be expressed in this form, i.e. <math>g = \min\{x\alpha+y\beta|\alpha,\beta\in\mathbb Z, x\alpha+y\beta > 0\}</math>. | ||
In particular, if <math>x</math> and <math>y</math> are [[relatively prime]] then there are integers <math>\alpha</math> and <math>\beta</math> for which <math>x\alpha+y\beta=1</math>. | In particular, if <math>x</math> and <math>y</math> are [[relatively prime]] then there are integers <math>\alpha</math> and <math>\beta</math> for which <math>x\alpha+y\beta=1</math>. | ||
Line 11: | Line 13: | ||
Thus there does exist integers <math>\alpha</math> and <math>\beta</math> such that <math>x\alpha+y\beta=g</math>. | Thus there does exist integers <math>\alpha</math> and <math>\beta</math> such that <math>x\alpha+y\beta=g</math>. | ||
+ | |||
+ | Now to prove <math>g</math> is minimum, consider any positive integer <math>g' = x\alpha'+y\beta'</math>. As <math>g|x,y</math> we get <math>g|x\alpha'+y\beta' = g'</math>, and as <math>g</math> and <math>g'</math> are both positive integers this gives <math>g\le g'</math>. So <math>g</math> is indeed the minimum. | ||
==See also== | ==See also== | ||
[[Category:Number theory]] | [[Category:Number theory]] | ||
{{stub}} | {{stub}} |
Revision as of 00:39, 21 March 2009
Bezout's Lemma states that if and
are nonzero integers and
, then there exist integers
and
such that
. In other words, there exists a linear combination of
and
equal to
.
Furthermore, is the smallest positive integer that can be expressed in this form, i.e.
.
In particular, if and
are relatively prime then there are integers
and
for which
.
Proof
Let ,
, and notice that
.
Since ,
. So
is smallest positive
for which
. Now if for all integers
, we have that
, then one of those
integers must be 1 from the Pigeonhole Principle. Assume for contradiction that
, and WLOG let
. Then,
, and so as we saw above this means
but this is impossible since
. Thus there exists an
such that
.
Therefore , and so there exists an integer
such that
, and so
. Now multiplying through by
gives,
, or
.
Thus there does exist integers and
such that
.
Now to prove is minimum, consider any positive integer
. As
we get
, and as
and
are both positive integers this gives
. So
is indeed the minimum.
See also
This article is a stub. Help us out by expanding it.