Difference between revisions of "2005 AMC 10B Problems/Problem 4"

 
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
For real numbers <math>a</math> and <math>b</math>, define <math>a \diamond b = \sqrt{a^2 + b^2}</math>. What is the value of
 +
 +
<math>(5 \diamond 12) \diamond ((-12) \diamond (-5))</math>?
 +
 +
<math>\mathrm{(A)} 0 \qquad \mathrm{(B)} \frac{17}{2} \qquad \mathrm{(C)} 13 \qquad \mathrm{(D)} 13\sqrt{2} \qquad \mathrm{(E)} 26</math>
 
== Solution ==
 
== Solution ==
 +
<math>(5 \diamond 12) \diamond ((-12) \diamond (-5))\ (\sqrt{5^2+12^2}) \diamond (\sqrt{(-12)^2+(-5)^2})\ (\sqrt{169})\diamond(\sqrt{169})\13\diamond13\ \sqrt{13^2+13^2}\ \sqrt{338}\ \boxed{\mathrm{(D)\,13\sqrt{2}}}</math>
 
== See Also ==
 
== See Also ==
 
*[[2005 AMC 10B Problems]]
 
*[[2005 AMC 10B Problems]]

Revision as of 09:46, 29 June 2011

Problem

For real numbers $a$ and $b$, define $a \diamond b = \sqrt{a^2 + b^2}$. What is the value of

$(5 \diamond 12) \diamond ((-12) \diamond (-5))$?

$\mathrm{(A)} 0 \qquad \mathrm{(B)} \frac{17}{2} \qquad \mathrm{(C)} 13 \qquad \mathrm{(D)} 13\sqrt{2} \qquad \mathrm{(E)} 26$

Solution

$(5 \diamond 12) \diamond ((-12) \diamond (-5))\\ (\sqrt{5^2+12^2}) \diamond (\sqrt{(-12)^2+(-5)^2})\\ (\sqrt{169})\diamond(\sqrt{169})\\13\diamond13\\ \sqrt{13^2+13^2}\\ \sqrt{338}\\ \boxed{\mathrm{(D)\,13\sqrt{2}}}$

See Also