Difference between revisions of "2006 AMC 12B Problems/Problem 15"
(→Solution 2) |
m |
||
Line 1: | Line 1: | ||
− | |||
− | |||
== Problem == | == Problem == | ||
Circles with centers <math> O</math> and <math> P</math> have radii 2 and 4, respectively, and are externally tangent. Points <math> A</math> and <math> B</math> are on the circle centered at <math> O</math>, and points <math> C</math> and <math> D</math> are on the circle centered at <math> P</math>, such that <math> \overline{AD}</math> and <math> \overline{BC}</math> are common external tangents to the circles. What is the area of hexagon <math> AOBCPD</math>? | Circles with centers <math> O</math> and <math> P</math> have radii 2 and 4, respectively, and are externally tangent. Points <math> A</math> and <math> B</math> are on the circle centered at <math> O</math>, and points <math> C</math> and <math> D</math> are on the circle centered at <math> P</math>, such that <math> \overline{AD}</math> and <math> \overline{BC}</math> are common external tangents to the circles. What is the area of hexagon <math> AOBCPD</math>? |
Revision as of 12:46, 30 January 2012
Contents
[hide]Problem
Circles with centers and have radii 2 and 4, respectively, and are externally tangent. Points and are on the circle centered at , and points and are on the circle centered at , such that and are common external tangents to the circles. What is the area of hexagon ?
Solution
Draw the altitude from onto and call the point . Because and are right angles due to being tangent to the circles, and the altitude creates as a right angle. is a rectangle with bisecting . The length is and has a length of , so by pythagorean's, is .
, which is half the area of the hexagon, so the area of the entire hexagon is
Solution 2
ADOP and OPBC are congruent right trapezoids with legs 2 and 4 and with OP equal to 6. Draw an altitude from O to either DP or CP, creating a rectangle with width 2 and base x, and a right triangle with one leg 2, the hypotenuse 6, and the other x. Using the Pythagorean theorem, x is equal to , and x is also equal to the height of the trapezoid. The area of the trapezoid is thus . and the total area is two trapezoids, or .
See also
2006 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |