Difference between revisions of "2010 AMC 8 Problems/Problem 22"
m (→Solution 2) |
m (→Solution 1) |
||
Line 6: | Line 6: | ||
==Solution 1== | ==Solution 1== | ||
− | Let the hundreds, tens, and units digits of the original three-digit number be <math>a</math>, <math>b</math>, and <math>c</math>, respectively. We are given that <math>a=c+2</math>. The original three-digit number is equal to <math>100a+10b+c = 100(c+2)+10b+c = 101c+10b+200</math>. The hundreds, tens, and units digits of the reversed three-digit number are <math>c</math>, <math>b</math>, and <math>a</math>, respectively. This number is equal to <math>100c+10b+a = 100c+10b+(c+2) = 101c+10b+2</math>. Subtracting this expression from the expression for the original number, we get <math>(101c+10b+200) - (101c+10b+2) = 198</math>. Thus, the units digit in the final result is <math>\textbf{(E)}\ 8</math> | + | Let the hundreds, tens, and units digits of the original three-digit number be <math>a</math>, <math>b</math>, and <math>c</math>, respectively. We are given that <math>a=c+2</math>. The original three-digit number is equal to <math>100a+10b+c = 100(c+2)+10b+c = 101c+10b+200</math>. The hundreds, tens, and units digits of the reversed three-digit number are <math>c</math>, <math>b</math>, and <math>a</math>, respectively. This number is equal to <math>100c+10b+a = 100c+10b+(c+2) = 101c+10b+2</math>. Subtracting this expression from the expression for the original number, we get <math>(101c+10b+200) - (101c+10b+2) = 198</math>. Thus, the units digit in the final result is <math>\boxed{\textbf{(E)}\ 8}</math> |
==Solution 2== | ==Solution 2== |
Revision as of 17:37, 4 November 2012
Contents
[hide]Problem
The hundreds digit of a three-digit number is more than the units digit. The digits of the three-digit number are reversed, and the result is subtracted from the original three-digit number. What is the units digit of the result?
Solution 1
Let the hundreds, tens, and units digits of the original three-digit number be , , and , respectively. We are given that . The original three-digit number is equal to . The hundreds, tens, and units digits of the reversed three-digit number are , , and , respectively. This number is equal to . Subtracting this expression from the expression for the original number, we get . Thus, the units digit in the final result is
Solution 2
The result must hold for any three-digit number with hundreds digit being more than the units digit. is such a number. Evaluating, we get . Thus, the units digit in the final result is
See Also
2010 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |