Difference between revisions of "2013 AMC 10A Problems/Problem 23"
Fowlmaster (talk | contribs) |
|||
Line 34: | Line 34: | ||
{{AMC10 box|year=2013|ab=A|num-b=22|num-a=24}} | {{AMC10 box|year=2013|ab=A|num-b=22|num-a=24}} | ||
{{AMC12 box|year=2013|ab=A|num-b=18|num-a=20}} | {{AMC12 box|year=2013|ab=A|num-b=18|num-a=20}} | ||
+ | {{MAA Notice}} |
Revision as of 11:08, 4 July 2013
Contents
[hide]Problem
In ,
, and
. A circle with center
and radius
intersects
at points
and
. Moreover
and
have integer lengths. What is
?
Solution 1
Let ,
, and
meet the circle at
and
, with
on
. Then
. Using the Power of a Point, we get that
. We know that
, and that
by the triangle inequality on
. Thus, we get that
Solution 2
Let represent
, and let
represent
. Since the circle goes through
and
,
.
Then by Stewart's Theorem,
(Since cannot be equal to
, dividing both sides of the equation by
is allowed.)
The prime factors of are
,
, and
. Obviously,
. In addition, by the Triangle Inequality,
, so
. Therefore,
must equal
, and
must equal
See Also
2013 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.