Difference between revisions of "2000 AIME I Problems/Problem 9"

(finish solution)
Line 36: Line 36:
  
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 18:49, 4 July 2013

Problem

The system of equations

$\begin{eqnarray*}\log_{10}(2000xy) - (\log_{10}x)(\log_{10}y) & = & 4 \

\log_{10}(2yz) - (\log_{10}y)(\log_{10}z) & = & 1 \ \log_{10}(zx) - (\log_{10}z)(\log_{10}x) & = & 0 \

\end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)

has two solutions $(x_{1},y_{1},z_{1})$ and $(x_{2},y_{2},z_{2})$. Find $y_{1} + y_{2}$.

Solution

Since $\log ab = \log a + \log b$, we can reduce the equations to a more recognizable form:

\begin{eqnarray*} -\log x \log y + \log x + \log y - 1 &=& 3 - \log 2000\\ -\log y \log z + \log y + \log z - 1 &=& - \log 2\\ -\log x \log z + \log x + \log z - 1 &=& -1\\ \end{eqnarray*}

Let $a,b,c$ be $\log x, \log y, \log z$ respectively. Using SFFT, the above equations become (*)

\begin{eqnarray*}(a - 1)(b - 1) &=& \log 2 \\ (b-1)(c-1) &=& \log 2 \\ (a-1)(c-1) &=& 1  \end{eqnarray*}

From here, multiplying the three equations gives

\begin{eqnarray*}(a-1)^2(b-1)^2(c-1)^2 &=& (\log 2)^2\\ (a-1)(b-1)(c-1) &=& \pm\log 2\end{eqnarray*}

Dividing the third equation of (*) from this equation, $b-1 = \log y - 1 = \pm\log 2 \Longrightarrow \log y = \pm \log 2 + 1$. This gives $y_1 = 20, y_2 = 5$, and the answer is $y_1 + y_2 = \boxed{025}$.

Alternatively, at (*), notice that the RHS of the first two equations are the same, so $a=c$. Substituting this into the third equation gives $a=c=0,2$, which if we solve backwards for $y$ will give us the same answer.

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png